login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A316074
Sequence a_k of column k shifts left k places under Weigh transform and equals signum(n) for n<k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
13
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 6, 2, 2, 1, 1, 1, 12, 4, 2, 2, 1, 1, 1, 25, 6, 3, 2, 2, 1, 1, 1, 52, 10, 5, 3, 2, 2, 1, 1, 1, 113, 17, 7, 4, 3, 2, 2, 1, 1, 1, 247, 29, 10, 6, 4, 3, 2, 2, 1, 1, 1, 548, 51, 17, 8, 5, 4, 3, 2, 2, 1, 1, 1, 1226, 89, 26, 12, 7, 5, 4, 3, 2, 2, 1, 1, 1
OFFSET
1,7
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 1, 1;
2, 1, 1, 1;
3, 2, 1, 1, 1;
6, 2, 2, 1, 1, 1;
12, 4, 2, 2, 1, 1, 1;
25, 6, 3, 2, 2, 1, 1, 1;
52, 10, 5, 3, 2, 2, 1, 1, 1;
113, 17, 7, 4, 3, 2, 2, 1, 1, 1;
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(T(i, k), j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
T:= (n, k)-> `if`(n<k, signum(n), b(n-k$2, k)):
seq(seq(T(n, k), k=1..n), n=1..16);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[T[i, k], j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
T[n_, k_] := If[n < k, Sign[n], b[n - k, n - k, k]];
Table[T[n, k], {n, 1, 16}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)
CROSSREFS
T(2n,n) gives A000009.
Sequence in context: A129713 A096669 A096591 * A332954 A115568 A375766
KEYWORD
nonn,tabl,eigen
AUTHOR
Alois P. Heinz, Jun 23 2018
STATUS
approved