OFFSET
1,7
LINKS
Alois P. Heinz, Rows n = 1..200, flattened
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 1, 1;
2, 1, 1, 1;
3, 2, 1, 1, 1;
6, 2, 2, 1, 1, 1;
12, 4, 2, 2, 1, 1, 1;
25, 6, 3, 2, 2, 1, 1, 1;
52, 10, 5, 3, 2, 2, 1, 1, 1;
113, 17, 7, 4, 3, 2, 2, 1, 1, 1;
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(T(i, k), j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
T:= (n, k)-> `if`(n<k, signum(n), b(n-k$2, k)):
seq(seq(T(n, k), k=1..n), n=1..16);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[T[i, k], j]*b[n - i*j, i - 1, k], {j, 0, n/i}]]];
T[n_, k_] := If[n < k, Sign[n], b[n - k, n - k, k]];
Table[T[n, k], {n, 1, 16}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Alois P. Heinz, Jun 23 2018
STATUS
approved