The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A316101 Sequence a_k of column k shifts left when Weigh transform is applied k times with a_k(n) = n for n<2; square array A(n,k), n>=0, k>=0, read by antidiagonals. 14
 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 3, 3, 1, 0, 1, 1, 1, 4, 6, 6, 1, 0, 1, 1, 1, 5, 10, 16, 12, 1, 0, 1, 1, 1, 6, 15, 32, 43, 25, 1, 0, 1, 1, 1, 7, 21, 55, 105, 120, 52, 1, 0, 1, 1, 1, 8, 28, 86, 210, 356, 339, 113, 1, 0, 1, 1, 1, 9, 36, 126, 371, 826, 1227, 985, 247, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,20 LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] EXAMPLE Square array A(n,k) begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 1, 3, 6, 10, 15, 21, 28, 36, 45, ... 1, 6, 16, 32, 55, 86, 126, 176, 237, ... 1, 12, 43, 105, 210, 371, 602, 918, 1335, ... 1, 25, 120, 356, 826, 1647, 2961, 4936, 7767, ... MAPLE wtr:= proc(p) local b; b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(p(i), j)* b(n-i*j, i-1), j=0..n/i))) end: j-> b(j\$2) end: g:= proc(k) option remember; local b, t; b[0]:= j-> `if`(j<2, j, b[k](j-1)); for t to k do b[t]:= wtr(b[t-1]) od: eval(b[0]) end: A:= (n, k)-> g(k)(n): seq(seq(A(n, d-n), n=0..d), d=0..14); MATHEMATICA wtr[p_] := Module[{b}, b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[p[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]]; b[#, #]&]; g[k_] := g[k] = Module[{b, t}, b[0][j_] := If[j < 2, j, b[k][j - 1]]; For[ t = 1, t <= k + 1, t++, b[t] = wtr[b[t - 1]]]; b[0]]; A[n_, k_] := g[k][n]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jul 10 2018, after Alois P. Heinz *) CROSSREFS Columns k=0-10 give: A057427, A004111, A007561, A316103, A316104, A316105, A316106, A316107, A316108, A316109, A316110. Rows include (offsets may differ): A000004, A000012, A000027, A000217, A134465. Main diagonal gives A316102. Cf. A144042, A316074. Sequence in context: A219967 A060505 A336727 * A211452 A035188 A342148 Adjacent sequences: A316098 A316099 A316100 * A316102 A316103 A316104 KEYWORD nonn,tabl,eigen AUTHOR Alois P. Heinz, Jun 24 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 02:28 EDT 2024. Contains 372703 sequences. (Running on oeis4.)