login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115063
Natural numbers of the form p^F(n_p)*q^F(n_q)*r^F(n_r)*...*z^F(n_z), where p,q,r,... are distinct primes and F(n) is a Fibonacci number.
7
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67
OFFSET
1,2
COMMENTS
The complementary sequence is 16, 48, 64, 80, 81, 112, 128, 144, 162, 176, 192, 208, 240, 272, 304, 320, 324, 336, 368, 384, 400, ... - R. J. Mathar, Apr 22 2010
Or exponentially Fibonacci numbers. - Vladimir Shevelev, Nov 15 2015
Sequences A004709, A005117, A046100 are subsequences. - Vladimir Shevelev, Nov 16 2015
Let h_k be the density of the subsequence of A115063 of numbers whose prime power factorization has the form Product_i p_i^e_i where the e_i all squares <= k^2. Then for every k>1 there exists eps_k>0 such that for any x from the interval (h_k-eps_k, h_k) there is no a sequence S of positive integers such that x is the density of numbers whose prime power factorization has the form Product_i p_i^e_i where the e_i are all in S. For a proof, see [Shevelev], the second link. - Vladimir Shevelev, Nov 17 2015
Numbers whose sets of unitary divisors (A077610) and Zeckendorf-infinitary divisors (see A318465) coincide. Also, numbers whose sets of unitary divisors and dual-Zeckendorf-infinitary divisors (see A331109) coincide. - Amiram Eldar, Aug 09 2024
LINKS
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv:1511.03860 [math.NT], 2015.
Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175 (2016), 385-395.
FORMULA
Sum_{i<=x, i is in A115063} 1 = h*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and h = Product_{prime p}(1 + Sum_{i>=2} (u(i)-u(i-1))/p^i) = 0.944335905... where u(n) is the characteristic function of sequence A000045. The calculations of h over the formula were done independently by Juan Arias-de-Reyna and Peter J. C. Moses.
For a proof of the formula, see [Shevelev], the first link. - Vladimir Shevelev, Nov 17 2015
EXAMPLE
12 is a term, since 12=2^2*3^1 and the exponents 2 and 1 are terms of Fibonacci sequence (A000045). - Vladimir Shevelev, Nov 15 2015
MATHEMATICA
fibQ[n_] := IntegerQ @ Sqrt[5 n^2 - 4] || IntegerQ @ Sqrt[5 n^2 + 4]; aQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], fibQ]; Select[Range[100], aQ] (* Amiram Eldar, Oct 06 2019 *)
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Mar 01 2006
EXTENSIONS
a(35) inserted by Amiram Eldar, Oct 06 2019
STATUS
approved