login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115975
Numbers of the form p^k, where p is a prime and k is a Fibonacci number.
8
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
OFFSET
1,2
LINKS
MATHEMATICA
With[{nn=60}, Take[Join[{1}, Union[First[#]^Last[#]&/@Union[Flatten[ Outer[List, Prime[Range[nn]], Fibonacci[Range[nn/6]]], 1]]]], 70]] (* Harvey P. Dale, Jun 05 2012 *)
fib[lim_] := Module[{s = {}, f = 1, k = 2}, While[f <= lim, AppendTo[s, f]; k++; f = Fibonacci[k]]; s]; seq[max_] := Module[{s = {1}, p = 2, e = 1, f = {}}, While[e > 0, e = Floor[Log[p, max]]; If[f == {}, f = fib[e], f = Select[f, # <= e &]]; s = Join[s, p^f]; p = NextPrime[p]]; Sort[s]]; seq[250] (* Amiram Eldar, Aug 09 2024 *)
PROG
(PARI) {m=240; v=Set([]); forprime(p=2, m, i=0; while((s=p^fibonacci(i))<m, v=setunion(v, Set(s)); i++)); v=vecsort(eval(v)); for(j=1, #v, print1(v[j], ", "))}
CROSSREFS
Subsequence of A000961 (powers of primes).
Cf. A117245 (partial sums).
Sequence in context: A322546 A283262 A334393 * A277187 A339841 A087797
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Mar 15 2006; corrected Apr 23 2006
EXTENSIONS
Edited and corrected by Klaus Brockhaus, Apr 25 2006
STATUS
approved