login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375751
a(n) is the difference between F=A000045(n) and the largest prime not exceeding F.
1
0, 0, 0, 1, 0, 2, 3, 2, 0, 5, 0, 4, 3, 4, 0, 5, 4, 2, 7, 4, 0, 17, 8, 14, 31, 14, 0, 37, 20, 26, 9, 20, 22, 11, 6, 12, 15, 32, 18, 17, 0, 16, 43, 24, 0, 17, 20, 26, 27, 20, 6, 9, 12, 34, 29, 36, 30, 47, 48, 4, 45, 32, 54, 27, 132, 22, 31, 4, 32, 11, 12, 60, 7, 76
OFFSET
3,6
LINKS
FORMULA
a(n) = A000045(n) - A138184(n).
a(n) = 0 <=> n in { A001605 }. - Alois P. Heinz, Aug 27 2024
MAPLE
a:= n-> (F-> F-prevprime(F+1))(combinat[fibonacci](n)):
seq(a(n), n=3..76); # Alois P. Heinz, Aug 27 2024
MATHEMATICA
a[n_]:=Module[{p=2}, While[(f=Fibonacci[n])>=p, pold=p; p=NextPrime[p]]; d=f-pold; If[d>0, f-pold, d=0]; d]; Array[a, 74, 3] (* Stefano Spezia, Aug 27 2024 *)
Map[(# - NextPrime[# + 1, -1]) &, Fibonacci[Range[3, 76]]] (* Amiram Eldar, Aug 29 2024 *)
PROG
(PARI) a(n) = my(F=fibonacci(n)); F-precprime(F)
(Python)
from sympy import prevprime, fibonacci
def A375753(n): return (F:=fibonacci(n)) - prevprime(F+1) # Karl-Heinz Hofmann, Aug 27 2024
KEYWORD
nonn,easy
AUTHOR
Hugo Pfoertner, Aug 27 2024
STATUS
approved