login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159977
a(n) = (smallest prime >= Fibonacci(n)) - Fibonacci(n).
3
1, 1, 0, 0, 0, 3, 0, 2, 3, 4, 0, 5, 0, 2, 3, 4, 0, 7, 20, 14, 3, 2, 0, 13, 4, 10, 11, 16, 0, 23, 4, 4, 25, 10, 14, 35, 6, 24, 3, 2, 6, 7, 0, 20, 9, 48, 0, 5, 28, 18, 23, 14, 14, 11, 16, 10, 21, 4, 62, 13, 38, 12, 7, 16, 12, 19, 36, 28, 143, 32, 58, 29, 96, 100, 33, 2, 30, 27, 12, 62, 25, 46, 0
OFFSET
1,6
FORMULA
a(n) = (smallest prime >= Fibonacci(n)) - Fibonacci(n).
a(n) = 0 <=> n in { A001605 }. - Alois P. Heinz, Feb 04 2018
EXAMPLE
a(1) = a(2) = 1 because Fibonacci(1) = Fibonacci(2) = 1, the smallest prime >= 1 is 2, and 2 - 1 = 1.
a(3) = a(4) = a(5) = 0 because Fibonacci(3)=2, Fibonacci(4)=3, and Fibonacci(5)=5 are all prime.
MAPLE
a:= n-> (f-> nextprime(f-1)-f)(combinat[fibonacci](n)):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 04 2018
MATHEMATICA
Table[If[PrimeQ[n], 0, NextPrime[n]-n], {n, Fibonacci[Range[90]]}] (* Harvey P. Dale, Jul 22 2016 *)
PROG
(UBASIC) 10 'FiboA 20 A=1:print A; 30 B=1:print B; 40 C=A+B:print C; :T=T+1 41 if C<>prmdiv(C) then print "<"; nxtprm(C)-C; ">":else print "<"; 0; ">"; 50 D=B+C:print D; 51 if D<>prmdiv(D) then print "<"; nxtprm(D)-D; ">":else print "<"; 0; ">"; 60 A=C:B=D:if T>22 then stop:else 40
(PARI) F=1; G=0; for(i=1, 100, print1(nextprime(F)-F, ", "); T=F; F+=G; G=T) \\ Hagen von Eitzen, Jul 20 2009
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Apr 28 2009
EXTENSIONS
More terms (cf. b-file) from Hagen von Eitzen, Jul 20 2009
Edited by Jon E. Schoenfield, Feb 04 2018
STATUS
approved