

A159978


a(n) = (smallest prime > Fibonacci(n))  Fibonacci(n).


2



1, 1, 1, 2, 2, 3, 4, 2, 3, 4, 8, 5, 6, 2, 3, 4, 4, 7, 20, 14, 3, 2, 4, 13, 4, 10, 11, 16, 14, 23, 4, 4, 25, 10, 14, 35, 6, 24, 3, 2, 6, 7, 12, 20, 9, 48, 10, 5, 28, 18, 23, 14, 14, 11, 16, 10, 21, 4, 62, 13, 38, 12, 7, 16, 12, 19, 36, 28, 143, 32, 58, 29, 96, 100, 33, 2, 30, 27, 12, 62, 25
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


LINKS

T. D. Noe, Table of n, a(n) for n=1..1000


FORMULA

Fibonacci sequence 1 1 2 3 5 8 13 21 34 . . . . Compute distance to next prime (even if term is already prime).
a(n) = A013632(A000045(n)).  R. J. Mathar, Apr 29 2009


EXAMPLE

a(6)=3 because the 6th Fibonacci term is 8 and the distance to nextprm(n) is 3 (118=3).


MAPLE

A159978 := proc(n) local f; f := combinat[fibonacci](n) ; nextprime(f)f ; end: seq(A159978(n), n=1..100) ; # R. J. Mathar, Apr 29 2009


MATHEMATICA

Table[f = Fibonacci[n]; NextPrime[f]  f, {n, 200}] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)


PROG

(UBASIC) 10 'FiboB 20 A=1:print A; 30 B=1:print B; 40 C=A+B:print C; :T=T+1:print "<"; nxtprm(C)C; ">"; 50 D=B+C:print D; :print "<"; nxtprm(D)D; ">"; 60 A=C:B=D:if T>22 then stop:else 40


CROSSREFS

Cf. A000045, A013632, A159977.
Sequence in context: A117632 A236241 A127731 * A230546 A286617 A328446
Adjacent sequences: A159975 A159976 A159977 * A159979 A159980 A159981


KEYWORD

easy,nonn


AUTHOR

Enoch Haga, Apr 28 2009


EXTENSIONS

Extended by R. J. Mathar, Apr 29 2009


STATUS

approved



