login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159981
Catalan numbers read modulo 4.
2
1, 1, 2, 1, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,3
COMMENTS
Essentially the same as A073267. - R. J. Mathar, May 25 2009
LINKS
Rob Burns, Asymptotic density of Catalan numbers modulo 3 and powers of 2, arXiv:1611.03705 [math.NT], 2016.
Sen-Peng Eu, Shu-Chung Liu and Yeong-Nan Yeh, Catalan and Motzkin numbers modulo 4 and 8, European Journal of Combinatorics, Vol. 29, No. 6 (2008), pp. 1449-1466. [From R. J. Mathar, Apr 30 2009]
Eric Rowland and Reem Yassawi, Profinite automata, Advances in Applied Mathematics, Vol. 85 (2017), pp. 60-83; arXiv preprint, arXiv:1403.7659 [math.DS], 2014-2016. See p. 4, 6 and 7.
FORMULA
a(n) = A000108(n) mod 4.
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = 0 (Burns, 2016). - Amiram Eldar, Jan 26 2021
MAPLE
A000108 := proc(n) binomial(2*n, n)/(n+1) ; end: A159981 := proc(n) A000108(n) mod 4 ; end: seq(A159981(n), n=0..120) ; # R. J. Mathar, Apr 30 2009
MATHEMATICA
Mod[CatalanNumber[Range[0, 110]], 4] (* Harvey P. Dale, Oct 05 2011 *)
PROG
(PARI) A159981(n) = (binomial(2*n, n)/(n+1))%4; \\ Antti Karttunen, Jan 17 2017
CROSSREFS
Sequence in context: A175609 A038717 A073267 * A071858 A122864 A140084
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Apr 28 2009
EXTENSIONS
Extended by R. J. Mathar, Apr 30 2009
STATUS
approved