login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375748
a(n) is the smallest possible side x in a family of triangles with integer sides x, y < x, x-y < z < x+y, such that exactly n pairs of triangles with equal area exist in this family.
2
2, 7, 15, 24, 62, 55, 132, 120, 191, 275, 311, 300, 722, 710, 703, 655, 1107, 1027, 1500, 1483, 1890, 1823, 1806, 1746, 4520, 4315, 4250, 4156, 4133, 4027, 3980, 3896, 6663, 6625, 6497, 6240, 9083, 9030, 8786, 8730, 12403, 11990, 11918, 11885, 11789, 11302, 11210, 11138, 27560
OFFSET
0,1
LINKS
IBM Research, Sibling triangles, Ponder This Challenge September 2024, asked for families with exactly 50 pairs.
Hugo Pfoertner, List of a(n) and A375749(n) for n=0..71.
EXAMPLE
n x=a(n)
| | y=A375749(n)
| | pairs of sides z leading to equal areas
0 2 1 only 1 triangle, no pair
1 7 4 [7,9]
2 15 10 [11,23], [17,19]
3 24 23 [19,43], [23,41], [29,37]
4 62 41 [45,95], [49,93], [59,87], [67,81]
PROG
(PARI) A(a, b, c) = (a+b+c)*(a+b-c)*(a-b+c)*(b+c-a); \\ squared area * 16
check(a, b) = {my(F=List()); for(c=a-b+1, a+b-1, listput(F, A(a, b, c))); F=vecsort(F); my(p=F[1], pc=1, mf=0); for(k=2, #F, if(F[k]==p, pc++; mf++, pc=1; p=F[k])); mf};
\\ returns [a(n), A375749(n)]
a375748_9(n) = for(a=2, oo, for(b=1, a-1, if(check(a, b)==n, return([a, b]))))
CROSSREFS
A375749 gives the corresponding side y.
Sequence in context: A132746 A252475 A350043 * A167543 A332495 A184976
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Sep 09 2024
STATUS
approved