login
A375577
Array read by ascending antidiagonals: A(n,k) = k^n + k*n + 1.
1
2, 1, 2, 1, 3, 2, 1, 4, 5, 2, 1, 5, 9, 7, 2, 1, 6, 15, 16, 9, 2, 1, 7, 25, 37, 25, 11, 2, 1, 8, 43, 94, 77, 36, 13, 2, 1, 9, 77, 259, 273, 141, 49, 15, 2, 1, 10, 143, 748, 1045, 646, 235, 64, 17, 2, 1, 11, 273, 2209, 4121, 3151, 1321, 365, 81, 19, 2
OFFSET
0,1
FORMULA
G.f. for the k-th column: (2*x^2 - 3*x - k^2 + k + 1)/((x - 1)^2*(x - k)).
E.g.f. for the k-th column: exp(x)*(1 + exp((k-1)*x) + k*x).
A(n,1) = n + 2.
A(2,n) = A000290(n+1).
A(n,n) = 2*A214647(n) + 1.
EXAMPLE
Array begins:
2, 2, 2, 2, 2, 2, ...
1, 3, 5, 7, 9, 11, ...
1, 4, 9, 16, 25, 36, ...
1, 5, 15, 37, 77, 141, ...
1, 6, 25, 94, 273, 646, ...
1, 7, 43, 259, 1045, 3151, ...
1, 8, 77, 748, 4121, 15656, ...
...
MATHEMATICA
A[0, 0]=2; A[n_, k_]:=k^n+k*n+1; Table[A[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A000290, A004247, A004248, A005408 (n=1), A005491 (n=3), A007395 (n=0), A054977 (k=0), A176691 (k=2), A176805 (k=3), A176916 (k=5), A176972 (k=7), A214647.
Cf. A375578 (antidiagonal sums).
Sequence in context: A128118 A205696 A029635 * A372704 A203301 A309853
KEYWORD
nonn,easy,tabl
AUTHOR
Stefano Spezia, Aug 19 2024
STATUS
approved