login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375574
Let d(1)<d(2)<...<d(q) denote the divisors of an integer k. a(n) = k is the smallest k such that the sum of its first n divisors, s = d(1) + ... + d(n), is also a divisor of k.
2
1, 6, 6, 28, 28, 24, 126, 234, 224, 360, 504, 980, 990, 1260, 1764, 1680, 840, 1080, 4140, 960, 5760, 4620, 9180, 11088, 8960, 6120, 11880, 25740, 7140, 2520, 2016, 25344, 9720, 48672, 11760, 10920, 15120, 14112, 61740, 55200, 74340, 91800, 8190, 78624, 70200
OFFSET
1,2
COMMENTS
The index i of s among the divisors of k is i = A375593(n), i.e. s = d(A375593(n)).
EXAMPLE
*----*------*---------*---------------------------------*
| n | a(n) | i | i-th | sum of n first divisors |
| | | | divisor | of a(n) |
*----*------*---------*---------------------------------*
| 2 | 6 | 3 | 3 | 1+2 = 3 |
*----*------*----*---------*----------------------------*
| 3 | 6 | 4 | 6 | 1+2+3 = 6 |
*----*------*----*---------*----------------------------*
| 4 | 28 | 5 | 14 | 1+2+4+7 = 14 |
*----*------*----*---------*----------------------------*
| 5 | 28 | 6 | 28 | 1+2+4+7+14 = 28 |
*----*------*----*---------*----------------------------*
| 6 | 24 | 8 | 24 | 1+2+3+4+6+8 = 24 |
*----*------*----*---------*----------------------------*
| 7 | 126 | 10 | 42 | 1+2+3+6+7+9+14 = 42 |
*----*------*----*---------*----------------------------*
| 8 | 234 | 10 | 78 | 1+2+3+6+9+13+18+26 = 78 |
*----*------*----*---------*----------------------------*
| 9 | 224 | 11 | 112 | 1+2+4+7+8+14+16+28+32 = 112|
|----*------*----*---------*----------------------------*
MAPLE
with(numtheory):nn:=10^6:T:=array(1..44):i:=0:
for n from 2 to 45 do:
ii:=1:
for a from 6 to nn while ii=1
do:
d:=divisors(a):n0:=nops(d):
if n0>=n
then
s:=sum('d[j]', 'j'=1..n):
for m from 1 to n0 do:
if s=d[m]
then
ii:=0:printf(`%d %d\n`, n, a):i:=i+1:T[i]:=a:
else
fi :
od :fi:
od:od:print(T):
PROG
(PARI) \\ See Corneth link
(Python)
from sympy import divisors
from itertools import count, islice
def agen(): # generator of terms
adict, n = dict(), 1
for k in count(1):
d = divisors(k)
if len(d) < n-1: continue
dset, s = set(d), 0
for i, di in enumerate(d, 1):
s += di
if i >= n and i not in adict and s in dset: adict[i] = k
while n in adict: yield adict[n]; n += 1
print(list(islice(agen(), 50))) # Michael S. Branicky, Aug 20 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 19 2024
EXTENSIONS
a(1) = 1 prepended by David A. Corneth, Aug 20 2024
STATUS
approved