OFFSET
1,2
COMMENTS
k = A375574(n) is the smallest k for which such sum s is a divisor of k.
EXAMPLE
a(24) = 47 because the sum of the 24 first divisors of k = A375574(24) = 11088 is s = 1+2+3+4+6+7+8+9+11+12+14+16+18+21+22+24+28+33+36+42+44+48+56+63 = 528 which is the 47th divisor of 11088.
MAPLE
with(numtheory):nn:=10^7:T:=array(1..79):i:=0:
for n from 2 to 80 do:
ii:=1:
for a from 6 to nn while ii=1
do:
d:=divisors(a):n0:=nops(d):
if n0>=n
then
s:=sum('d[j]', 'j'=1..n):
for m from 1 to n0 do:
if s=d[m]
then
ii:=0:printf(`%d %d %d\n`, n, a, m):i:=i+1:T[i]:=m:
else
fi :
od :fi:
od:od:print(T):
PROG
(Python)
from sympy import divisors
from itertools import count, islice
def agen(): # generator of terms
adict, n = dict(), 1
for k in count(1):
d = divisors(k)
if len(d) < n-1: continue
dset, s = set(d), 0
for i, di in enumerate(d, 1):
s += di
if i >= n and i not in adict and s in dset:
adict[i] = d.index(s) + 1
while n in adict: yield adict[n]; n += 1
print(list(islice(agen(), 65))) # Michael S. Branicky, Aug 20 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 20 2024
STATUS
approved