login
A375593
Index i among the divisors of k = A375574(n) of the sum s of the first n divisors of k.
1
1, 3, 4, 5, 6, 8, 10, 10, 11, 19, 20, 16, 20, 28, 22, 32, 29, 29, 29, 27, 38, 40, 39, 47, 33, 42, 52, 55, 43, 46, 36, 47, 45, 47, 54, 58, 70, 51, 59, 62, 60, 77, 48, 80, 82, 75, 67, 79, 67, 68, 80, 84, 91, 62, 107, 98, 99, 88, 112, 103, 120, 70, 96, 88, 89, 72, 98
OFFSET
1,2
COMMENTS
k = A375574(n) is the smallest k for which such sum s is a divisor of k.
EXAMPLE
a(24) = 47 because the sum of the 24 first divisors of k = A375574(24) = 11088 is s = 1+2+3+4+6+7+8+9+11+12+14+16+18+21+22+24+28+33+36+42+44+48+56+63 = 528 which is the 47th divisor of 11088.
MAPLE
with(numtheory):nn:=10^7:T:=array(1..79):i:=0:
for n from 2 to 80 do:
ii:=1:
for a from 6 to nn while ii=1
do:
d:=divisors(a):n0:=nops(d):
if n0>=n
then
s:=sum('d[j]', 'j'=1..n):
for m from 1 to n0 do:
if s=d[m]
then
ii:=0:printf(`%d %d %d\n`, n, a, m):i:=i+1:T[i]:=m:
else
fi :
od :fi:
od:od:print(T):
PROG
(Python)
from sympy import divisors
from itertools import count, islice
def agen(): # generator of terms
adict, n = dict(), 1
for k in count(1):
d = divisors(k)
if len(d) < n-1: continue
dset, s = set(d), 0
for i, di in enumerate(d, 1):
s += di
if i >= n and i not in adict and s in dset:
adict[i] = d.index(s) + 1
while n in adict: yield adict[n]; n += 1
print(list(islice(agen(), 65))) # Michael S. Branicky, Aug 20 2024
CROSSREFS
Cf. A375574.
Sequence in context: A299114 A376608 A103605 * A098171 A039031 A047309
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 20 2024
STATUS
approved