OFFSET
1,4
COMMENTS
Apart from a factor sqrt(Pi)/16 the same as Adamchik's generalized Stirling number [1/2,4].
LINKS
V. S. Adamchik, On Stirling numbers and Euler sums, J. Comput. Appl. Math. 79 (1) (1997) 119-130.
R. J. Mathar, Chebyshev approximation of x^m*(-log x)^l in the interval 0<=x<=1, arXiv:2408.15212 (2024)
FORMULA
Equals 5F4(1/2,1/2,1/2,1/2,1/2; 3/2,3/2,3/2,3/2; 1) = Sum_{k>= 0} binomial(2k,k)/[2^(2k)*(2k+1)^4].
Equals A196878/6. - R. J. Mathar, Aug 23 2024
EXAMPLE
1.006980484962515...
MAPLE
1/48*Pi*(Pi^2*log(2)+4*log(2)^3+6*Zeta(3)) ; evalf(%) ;
MATHEMATICA
First[RealDigits[Pi*(Pi^2*Log[2] + 4*Log[2]^3 + 6*Zeta[3])/48, 10, 100]] (* Paolo Xausa, Aug 23 2024 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Aug 20 2024
STATUS
approved