login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375597
Triangle read by rows: T(n, k) = n! * 3^k * hypergeom([-k], [-n], -2/3).
3
1, 1, 1, 2, 4, 10, 6, 14, 34, 82, 24, 60, 152, 388, 1000, 120, 312, 816, 2144, 5656, 14968, 720, 1920, 5136, 13776, 37040, 99808, 269488, 5040, 13680, 37200, 101328, 276432, 755216, 2066032, 5659120, 40320, 110880, 305280, 841440, 2321664, 6412128, 17725952, 49045792, 135819136
OFFSET
0,4
FORMULA
T(n, k) = (-2)^k*Sum_{j=0..k} (-3/2)^(k - j)*binomial(k, k - j)*(n - j)!.
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 2, 4, 10;
[3] 6, 14, 34, 82;
[4] 24, 60, 152, 388, 1000;
[5] 120, 312, 816, 2144, 5656, 14968;
[6] 720, 1920, 5136, 13776, 37040, 99808, 269488;
[7] 5040, 13680, 37200, 101328, 276432, 755216, 2066032, 5659120;
...
MATHEMATICA
T[n_, k_] := (-2)^k*Sum[(-3/2)^(k - j)*Binomial[k, k - j]*(n - j)!, {j, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Detlef Meya, Aug 20 2024
STATUS
approved