login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374427
Triangle read by rows: T(n, k) = n! * 2^k * hypergeom([-k], [-n], -1/2).
8
1, 1, 1, 2, 3, 5, 6, 10, 17, 29, 24, 42, 74, 131, 233, 120, 216, 390, 706, 1281, 2329, 720, 1320, 2424, 4458, 8210, 15139, 27949, 5040, 9360, 17400, 32376, 60294, 112378, 209617, 391285, 40320, 75600, 141840, 266280, 500184, 940074, 1767770, 3325923, 6260561
OFFSET
0,4
FORMULA
T(n, k) = (-1)^k*Sum_{j=0..k} (-2)^(k - j)*binomial(k, k - j)*(n - j)!. - Detlef Meya, Aug 12 2024
EXAMPLE
1
1 1
2 3 5
6 10 17 29
24 42 74 131 233
120 216 390 706 1281 2329
720 1320 2424 4458 8210 15139 27949
5040 9360 17400 32376 60294 112378 209617 391285
40320 75600 141840 266280 500184 940074 1767770 3325923 6260561
362880 685440 1295280 2448720 4631160 8762136 16584198 31400626 59475329
MAPLE
A374427 := proc(n, k)
(-1)^k*add((-2)^(k-j)*binomial(k, k-j)*(n-j)!, j=0..k) ;
end proc:
seq(seq(A374427(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Aug 30 2024
MATHEMATICA
T[n_, k_] := n! 2^k Hypergeometric1F1[-k, -n, -1/2];
(* Alternative: )
T[n_, k_] := (-1)^k*Sum[(-2)^(k - j)*Binomial[k, k - j]*((n - j)!), {j, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 12 2024 *)
CROSSREFS
Cf. A000354 (main diagonal), A374428, A007680 (col k=0).
Sequence in context: A161715 A347799 A335597 * A164523 A375734 A227305
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 28 2024
STATUS
approved