login
A374428
Triangle read by rows: T(n, k) = n! * 2^k * hypergeom([-k], [-n], 1/2).
7
1, 1, 3, 2, 5, 13, 6, 14, 33, 79, 24, 54, 122, 277, 633, 120, 264, 582, 1286, 2849, 6331, 720, 1560, 3384, 7350, 15986, 34821, 75973, 5040, 10800, 23160, 49704, 106758, 229502, 493825, 1063623, 40320, 85680, 182160, 387480, 824664, 1756086, 3741674, 7977173, 17017969
OFFSET
0,3
FORMULA
T(n, k) = Sum_{j=0..k} 2^(k - j)*binomial(k, k - j)*(n - j)!. - Detlef Meya, Aug 12 2024
MATHEMATICA
T[n_, k_] := n! 2^k Hypergeometric1F1[-k, -n, 1/2];
(* Alternative: *)
T[n_, k_] := Sum[2^(k - j)*Binomial[k, k - j]*((n - j)!), {j, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Detlef Meya, Aug 12 2024 *)
CROSSREFS
Cf. A010844 (main diagonal), A374427.
Sequence in context: A300939 A062941 A211018 * A290427 A265759 A057674
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 28 2024
STATUS
approved