login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318741
Decimal expansion of Pi^3/48 + Pi*log(2)^2/4.
1
1, 0, 2, 3, 3, 1, 1, 0, 1, 2, 2, 3, 6, 3, 7, 0, 3, 2, 3, 0, 8, 4, 8, 2, 0, 5, 0, 4, 0, 8, 8, 4, 8, 6, 7, 3, 8, 3, 1, 8, 7, 2, 0, 9, 7, 6, 7, 4, 7, 3, 2, 8, 1, 3, 0, 3, 0, 5, 1, 3, 4, 2, 7, 6, 3, 6, 2, 9, 5, 3, 3, 4, 3, 9, 7, 5, 6, 0, 8, 6, 6, 8, 2, 9, 2, 3, 4
OFFSET
1,3
COMMENTS
The first part of Ramanujan's question 308 in the Journal of the Indian Mathematical Society (III, 168) asked "Show that Integral_{t=0..Pi/2} t * cotan(t) * log(sin(t)) dt = -Pi^3/48 - Pi*log(2)^2/4".
LINKS
V. S. Adamchik On Stirling numbers and Euler sums, J. Comput. Appl. Math. 79 (1997) 119-130. Equals [1/2,3] apart from factor 8/sqrt Pi.
B. C. Berndt, Y. S. Choi and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q308, JIMS III).
B. C. Berndt, Y. S. Choi and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q308, JIMS III).
Pedro Ribeiro, Problem 12051, The American Mathematical Monthly, Vol. 125, No. 6 (2018), p. 563; A Series Involving Central Binominal [sic] Coefficients, Solution to Problem 12051 by Hongwei Chen, ibid., Vol. 127, No. 2 (2020), pp. 182-183.
FORMULA
Equals Sum_{k>=0} binomial(2*k,k)/(4^k*(2*k+1)^3) (Ribeiro, 2018). - Amiram Eldar, Oct 04 2021
Equals 4F3(1/2,1/2,1/2,1/2 ; 3/2,3/2,3/2 ; 1) [Adamchik]. - R. J. Mathar, Aug 19 2024
Equals A196877/2. - R. J. Mathar, Aug 23 2024
EXAMPLE
1.0233110122363703230848205040884867383187209767473281303051342763...
MATHEMATICA
RealDigits[Pi^3/48 + Pi*Log[2]^2/4, 10, 100][[1]] (* Amiram Eldar, Oct 04 2021 *)
PROG
(PARI) Pi^3/48+Pi*log(2)^2/4
(PARI) -intnum(x=0, Pi/2, x*cotan(x)*log(sin(x)))
CROSSREFS
Sequence in context: A021433 A228624 A124798 * A171872 A005135 A290003
KEYWORD
nonn,cons
AUTHOR
Hugo Pfoertner, Sep 17 2018
STATUS
approved