OFFSET
1,3
COMMENTS
The first part of Ramanujan's question 308 in the Journal of the Indian Mathematical Society (III, 168) asked "Show that Integral_{t=0..Pi/2} t * cotan(t) * log(sin(t)) dt = -Pi^3/48 - Pi*log(2)^2/4".
LINKS
V. S. Adamchik On Stirling numbers and Euler sums, J. Comput. Appl. Math. 79 (1997) 119-130. Equals [1/2,3] apart from factor 8/sqrt Pi.
B. C. Berndt, Y. S. Choi and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q308, JIMS III).
B. C. Berndt, Y. S. Choi and S. Y. Kang, The problems submitted by Ramanujan to the Journal of Indian Math. Soc., in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q308, JIMS III).
R. J. Mathar, Chebyshev expansion of x^m*(-log x)^l in the interval 0<=x<=1, arXiv:2408.15212 (2024)
Pedro Ribeiro, Problem 12051, The American Mathematical Monthly, Vol. 125, No. 6 (2018), p. 563; A Series Involving Central Binominal [sic] Coefficients, Solution to Problem 12051 by Hongwei Chen, ibid., Vol. 127, No. 2 (2020), pp. 182-183.
FORMULA
Equals Sum_{k>=0} binomial(2*k,k)/(4^k*(2*k+1)^3) (Ribeiro, 2018). - Amiram Eldar, Oct 04 2021
Equals 4F3(1/2,1/2,1/2,1/2 ; 3/2,3/2,3/2 ; 1) [Adamchik]. - R. J. Mathar, Aug 19 2024
Equals A196877/2. - R. J. Mathar, Aug 23 2024
EXAMPLE
1.0233110122363703230848205040884867383187209767473281303051342763...
MATHEMATICA
RealDigits[Pi^3/48 + Pi*Log[2]^2/4, 10, 100][[1]] (* Amiram Eldar, Oct 04 2021 *)
PROG
(PARI) Pi^3/48+Pi*log(2)^2/4
(PARI) -intnum(x=0, Pi/2, x*cotan(x)*log(sin(x)))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Hugo Pfoertner, Sep 17 2018
STATUS
approved