login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290003
G.f.: A(x) = Sum_{n=-oo..+oo} (x - x^n)^n.
3
1, -1, 1, -2, 3, -3, 1, 1, 1, -7, 10, -6, 1, 0, 1, -8, 23, -25, 1, 17, 1, -32, 36, -12, 1, -21, 26, -14, 55, -92, 1, 93, 1, -129, 78, -18, 108, -121, 1, -20, 105, -49, 1, 19, 1, -298, 430, -24, 1, -423, 50, 424, 171, -469, 1, -217, 661, -450, 210, -30, 1, -203, 1, -32, 591, -897, 1288, -881, 1, -987, 300, 2407, 1, -2804, 1, -38, 2626, -1350, 1387, -2380, 1, 837, 487, -42, 1, -2855, 3741, -44, 465, -3301, 1, -326, 4291, -2324, 528, -48, 5815, -12713, 1, 6957, 1422, 4074, 1, -10371, 1, -8451, 20322, -54, 1, -15589, 1
OFFSET
0,4
COMMENTS
Compare g.f. to: Sum_{n=-oo..+oo} (x - x^(n+1))^n = 0.
LINKS
FORMULA
G.f.: 1 + Sum_{n>=1} x^n*(1 - x^(n-1))^n + (-x)^(n^2)/(1 - x^(n+1))^n.
a(p+1) = 1 for primes p > 3 (conjecture).
EXAMPLE
G.f.: A(x) = 1 - x + x^2 - 2*x^3 + 3*x^4 - 3*x^5 + x^6 + x^7 + x^8 - 7*x^9 + 10*x^10 - 6*x^11 + x^12 + x^14 - 8*x^15 + 23*x^16 - 25*x^17 + x^18 + 17*x^19 + x^20 - 32*x^21 + 36*x^22 - 12*x^23 + x^24 - 21*x^25 + 26*x^26 - 14*x^27 + 55*x^28 - 92*x^29 + x^30 +...
where A(x) = 1 + P(x) + N(x) with
P(x) = (x-x) + (x-x^2)^2 + (x-x^3)^3 + (x-x^4)^4 + (x-x^5)^5 + (x-x^6)^6 + (x-x^7)^7 +...+ (x-x^n)^n +...
N(x) = -x/(1 - x^2) + x^4/(1-x^3)^2 - x^9/(1-x^4)^3 + x^16/(1-x^5)^4 - x^25/(1-x^6)^5 +...+ (-x)^(n^2)/(1-x^(n+1))^n +...
Explicitly,
P(x) = x^2 - x^3 + 2*x^4 - 2*x^5 + x^6 + x^8 - 5*x^9 + 7*x^10 - 5*x^11 + x^12 + x^14 - 7*x^15 + 17*x^16 - 18*x^17 + x^18 + 12*x^19 + x^20 - 25*x^21 + 29*x^22 - 11*x^23 + x^24 - 12*x^25 + 16*x^26 - 13*x^27 + 46*x^28 - 70*x^29 + x^30 +...
N(x) = -x - x^3 + x^4 - x^5 + x^7 - 2*x^9 + 3*x^10 - x^11 - x^15 + 6*x^16 - 7*x^17 + 5*x^19 - 7*x^21 + 7*x^22 - x^23 - 9*x^25 + 10*x^26 - x^27 + 9*x^28 - 22*x^29 +...
PROG
(PARI) {a(n) = local(A=1); A = sum(k=-n, n, (x - x^k)^k +x*O(x^n)); polcoeff(A, n)}
for(n=0, 100, print1(a(n), ", "))
(PARI) {a(n) = local(A=1); A = 1 + sum(k=1, n, x^k*(1 - x^(k-1))^k + (-x)^(k^2)/(1 - x^(k+1))^k +x*O(x^n)); polcoeff(A, n)}
for(n=0, 500, print1(a(n), ", "))
CROSSREFS
Sequence in context: A318741 A171872 A005135 * A139460 A105244 A257451
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 03 2017
STATUS
approved