Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 13 2025 19:19:00
%S 1,-1,1,-2,3,-3,1,1,1,-7,10,-6,1,0,1,-8,23,-25,1,17,1,-32,36,-12,1,
%T -21,26,-14,55,-92,1,93,1,-129,78,-18,108,-121,1,-20,105,-49,1,19,1,
%U -298,430,-24,1,-423,50,424,171,-469,1,-217,661,-450,210,-30,1,-203,1,-32,591,-897,1288,-881,1,-987,300,2407,1,-2804,1,-38,2626,-1350,1387,-2380,1,837,487,-42,1,-2855,3741,-44,465,-3301,1,-326,4291,-2324,528,-48,5815,-12713,1,6957,1422,4074,1,-10371,1,-8451,20322,-54,1,-15589,1
%N G.f.: A(x) = Sum_{n=-oo..+oo} (x - x^n)^n.
%C Compare g.f. to: Sum_{n=-oo..+oo} (x - x^(n+1))^n = 0.
%H Paul D. Hanna, <a href="/A290003/b290003.txt">Table of n, a(n) for n = 0..2050</a>
%F G.f.: 1 + Sum_{n>=1} x^n*(1 - x^(n-1))^n + (-x)^(n^2)/(1 - x^(n+1))^n.
%F a(p+1) = 1 for primes p > 3 (conjecture).
%e G.f.: A(x) = 1 - x + x^2 - 2*x^3 + 3*x^4 - 3*x^5 + x^6 + x^7 + x^8 - 7*x^9 + 10*x^10 - 6*x^11 + x^12 + x^14 - 8*x^15 + 23*x^16 - 25*x^17 + x^18 + 17*x^19 + x^20 - 32*x^21 + 36*x^22 - 12*x^23 + x^24 - 21*x^25 + 26*x^26 - 14*x^27 + 55*x^28 - 92*x^29 + x^30 +...
%e where A(x) = 1 + P(x) + N(x) with
%e P(x) = (x-x) + (x-x^2)^2 + (x-x^3)^3 + (x-x^4)^4 + (x-x^5)^5 + (x-x^6)^6 + (x-x^7)^7 +...+ (x-x^n)^n +...
%e N(x) = -x/(1 - x^2) + x^4/(1-x^3)^2 - x^9/(1-x^4)^3 + x^16/(1-x^5)^4 - x^25/(1-x^6)^5 +...+ (-x)^(n^2)/(1-x^(n+1))^n +...
%e Explicitly,
%e P(x) = x^2 - x^3 + 2*x^4 - 2*x^5 + x^6 + x^8 - 5*x^9 + 7*x^10 - 5*x^11 + x^12 + x^14 - 7*x^15 + 17*x^16 - 18*x^17 + x^18 + 12*x^19 + x^20 - 25*x^21 + 29*x^22 - 11*x^23 + x^24 - 12*x^25 + 16*x^26 - 13*x^27 + 46*x^28 - 70*x^29 + x^30 +...
%e N(x) = -x - x^3 + x^4 - x^5 + x^7 - 2*x^9 + 3*x^10 - x^11 - x^15 + 6*x^16 - 7*x^17 + 5*x^19 - 7*x^21 + 7*x^22 - x^23 - 9*x^25 + 10*x^26 - x^27 + 9*x^28 - 22*x^29 +...
%e From _Paul D. Hanna_, Jan 13 2025: (Start)
%e SPECIAL VALUES.
%e A local maximum of A(x) is at x = z, A'(z) = 0,
%e where z = 0.6783626505745664596168958924200373689742586374321477329...
%e and A(z) = 0.332320805615430858829730480236535256165083297416146964...
%e A(5/6) = 0.30801526795391347776371668529063511729774504098314...
%e A(4/5) = 0.31797024517441016604092565708098992009134940089362...
%e A(3/4) = 0.32759707660987407896902126812991555844980484348844...
%e A(2/3) = 0.33220302782561874934924055409715505666564907222676...
%e A(3/5) = 0.32724657183605678719721082848286562112862495149949...
%e A(1/2) = 0.30725396830704316799197832656390411971168116373389...
%e A(2/5) = 0.27337943400586708871078028747061201307317280175586...
%e A(1/3) = 0.24338606674563424484910361835257533242309621632065...
%e A(1/4) = 0.19758524006807690544490179709803177425355852401229...
%e A(1/5) = 0.16558333624735433324843855679493132539350188690309...
%e A(1/6) = 0.14230098666491512550971306545368484826875874989347...
%e (End)
%o (PARI) {a(n) = local(A=1); A = sum(k=-n, n, (x - x^k)^k +x*O(x^n)); polcoeff(A, n)}
%o for(n=0, 100, print1(a(n), ", "))
%o (PARI) {a(n) = local(A=1); A = 1 + sum(k=1, n, x^k*(1 - x^(k-1))^k + (-x)^(k^2)/(1 - x^(k+1))^k +x*O(x^n)); polcoeff(A, n)}
%o for(n=0, 500, print1(a(n), ", "))
%Y Cf. A260116, A260147, A378582, A379195.
%K sign,changed
%O 0,4
%A _Paul D. Hanna_, Sep 03 2017