|
|
A318738
|
|
Numbers n=2*k-1 where Sum_{j=1..k} (-1)^(j+1) * d(2*j-1) achieves a new negative record, with d(n) = number of divisors of n (A000005).
|
|
5
|
|
|
3, 15, 39, 63, 99, 259, 319, 403, 675, 679, 943, 1615, 1779, 2919, 4899, 5775, 7399, 7407, 13475, 13479, 25635, 29835, 29839, 44955, 78463, 78475, 108927, 108931, 126819, 136959, 136975, 136983, 244875, 244879, 256355, 276675, 276687, 457275, 530139
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Hugo Pfoertner, Table of n, a(n) for n = 1..282
|
|
EXAMPLE
|
a(1) = 3, because s = d(1)-d(3) = 1-2 = -1 is the first negative record.
a(2) = 15, because s = d(1)-d(3)+d(5)-d(7)+d(9)-d(11)+d(13)-d(15) =
1-2+2-2+3-2+2-4 = -2 is the first sum less than -1.
|
|
PROG
|
(PARI) s=0; j=-1; smin=0; forstep(k=1, 600000, 2, j=-j; s=s+j*numdiv(k); if(s<smin, smin=s; print1(k, ", ")))
|
|
CROSSREFS
|
Cf. A000005, A099774, A318734, A318735, A318736, A318737.
Sequence in context: A117561 A353679 A065765 * A146853 A183476 A297621
Adjacent sequences: A318735 A318736 A318737 * A318739 A318740 A318741
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Hugo Pfoertner, Sep 08 2018
|
|
STATUS
|
approved
|
|
|
|