login
A374378
Iterated rascal triangle R2: T(n,k) = Sum_{m=0..2} binomial(n-k,m)*binomial(k,m).
3
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 19, 15, 6, 1, 1, 7, 21, 31, 31, 21, 7, 1, 1, 8, 28, 46, 53, 46, 28, 8, 1, 1, 9, 36, 64, 81, 81, 64, 36, 9, 1, 1, 10, 45, 85, 115, 126, 115, 85, 45, 10, 1, 1, 11, 55, 109, 155, 181, 181, 155, 109, 55, 11, 1
OFFSET
0,5
COMMENTS
Triangle T(n,k) is the second triangle R2 among the rascal-family triangles; A374452 is triangle R3; A077028 is triangle R1.
Triangle T(n,k) equals Pascal's triangle A007318 through row 2i+1, i=2 (i.e., row 5).
Triangle T(n,k) equals Pascal's triangle A007318 through column i, i=2 (i.e., column 2).
LINKS
Amelia Gibbs and Brian K. Miceli, Two Combinatorial Interpretations of Rascal Numbers, arXiv:2405.11045 [math.CO], 2024.
Jena Gregory, Brandt Kronholm, and Jacob White, Iterated rascal triangles, Aequationes mathematicae, 2023.
Jena Gregory, Iterated rascal triangles, Theses and Dissertations. 1050., The University of Texas Rio Grande Valley, 2022.
Philip K. Hotchkiss, Student Inquiry and the Rascal Triangle, arXiv:1907.07749 [math.HO], 2019.
Philip K. Hotchkiss, Generalized Rascal Triangles, Journal of Integer Sequences, Vol. 23, 2020.
FORMULA
T(n,k) = 1 + k*(n-k) + (1/4)*(k-1)*k*(n-k-1)*(n-k).
Row sums give A006261(n).
Diagonal T(n+1, n) gives A000027(n).
Diagonal T(n+2, n) gives A000217(n).
Diagonal T(n+3, n) gives A005448(n).
Diagonal T(n+4, n) gives A056108(n).
Diagonal T(n+5, n) gives A212656(n).
Column k=3 difference binomial(n+6, 3) - T(n+6, 3) gives C(n+3,3)=A007318(n+3,3).
Column k=4 difference binomial(n+7, 4) - T(n+7, 4) gives fifth column of (1,4)-Pascal triangle A095667.
G.f.: (1 + 3*x^4*y^2 - (2*x + 3*x^3*y)*(1 + y) + x^2*(1 + 5*y + y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 09 2024
EXAMPLE
Triangle begins:
--------------------------------------------------
k= 0 1 2 3 4 5 6 7 8 9 10
--------------------------------------------------
n=0: 1
n=1: 1 1
n=2: 1 2 1
n=3: 1 3 3 1
n=4: 1 4 6 4 1
n=5: 1 5 10 10 5 1
n=6: 1 6 15 19 15 6 1
n=7: 1 7 21 31 31 21 7 1
n=8: 1 8 28 46 53 46 28 8 1
n=9: 1 9 36 64 81 81 64 36 9 1
n=10: 1 10 45 85 115 126 115 85 45 10 1
MATHEMATICA
t[n_, k_]:=Sum[Binomial[n - k, m]*Binomial[k, m], {m, 0, 2}]; Column[Table[t[n, k], {n, 0, 12}, {k, 0, n}], Center]
KEYWORD
nonn,tabl
AUTHOR
Kolosov Petro, Jul 06 2024
STATUS
approved