OFFSET
1,2
COMMENTS
For n > 2 a(n) is prime iff rad(i*j) is a primorial number, for then k is the smallest prime which does not divide rad(i*j).
Initially same terms as A362889, but divergence occurs at a(69) = 147.
Conjectured to be a permutation of the natural numbers with primes in order.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..2050
Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..2048.
EXAMPLE
a(3) = 3 since rad(3) !| rad(1*2) whereas rad (1*2*3) = 6 = A002110(2).
a(5,6) = {4,6}—> a(7) = 10 since rad(10) !| rad(24), rad(4*6*10) = 30 = A002110(3) and there is no smaller novel term with this property.
From Michael De Vlieger, Jul 06 2024: (Start)
Table of a(3..18) showing prime decomposition of rad(i*j) and rad(i*j*k):
n a(n) rad(i*j) rad(i*j*k)
-------------------------------
3 3 2 2 3
4 5 2 3 2 3 5
5 4 . 3 5 2 3 5
6 6 2 . 5 2 3 5
7 10 2 3 2 3 5
8 7 2 3 5 2 3 5 7
9 9 2 . 5 7 2 3 5 7
10 20 . 3 . 7 2 3 5 7
11 14 2 3 5 2 3 5 7
12 12 2 . 5 7 2 3 5 7
13 15 2 3 . 7 2 3 5 7
14 21 2 3 5 2 3 5 7
15 8 . 3 5 7 2 3 5 7
16 25 2 3 . 7 2 3 5 7
17 18 2 . 5 2 3 5
18 28 2 3 5 2 3 5 7 (End)
MATHEMATICA
nn = 1200; c[_] := False; rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]];
Array[Set[{a[#], c[#]}, {#, True}] &, 2];
f[n_] := Or[IntegerQ@ Log2[n],
And[EvenQ[n], Union@ Differences@ Map[PrimePi, FactorInteger[n][[All, 1]]] == {1}]]; i = a[1]; j = a[2]; u = 3;
Monitor[Do[r = rad[i*j]; k = u;
While[Or[c[k], Divisible[#, rad[k]], ! f[# k]] &[i*j], k++];
Set[{a[n], c[k], i, j}, {k, True, j, k}];
If[k == u, While[c[u], u++]], {n, 3, nn}], n];
Array[a, nn] (* Michael De Vlieger, Jul 06 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
David James Sycamore, Jul 06 2024
STATUS
approved