OFFSET
0,5
COMMENTS
LINKS
Jena Gregory, Brandt Kronholm and Jacob White, Iterated rascal triangles, Aequationes mathematicae, 2023.
Jena Gregory, Iterated rascal triangles, Theses and Dissertations. 1050., The University of Texas Rio Grande Valley, 2022.
Amelia Gibbs and Brian K. Miceli, Two Combinatorial Interpretations of Rascal Numbers, arXiv:2405.11045 [math.CO], 2024.
Philip K. Hotchkiss, Student Inquiry and the Rascal Triangle, arXiv:1907.07749 [math.HO], 2019.
Philip K. Hotchkiss, Generalized Rascal Triangles, Journal of Integer Sequences, Vol. 23, 2020.
Petro Kolosov, Identities in Iterated Rascal Triangles, 2024.
FORMULA
T(n,k) = 1 + k*(n-k) + 1/4*(k-1)*k*(n-k-1)*(n-k) + 1/36*(k-2)*(k-1)*k*(n-k-2)*(n-k-1)*(n-k).
Row sums give A008860(n).
Diagonal T(n+1, n) gives A000027(n).
Diagonal T(n+2, n) gives A000217(n).
Diagonal T(n+3, n) gives A000292(n).
Diagonal T(n+4, n) gives A005894(n).
Diagonal T(n+6, n) gives A247608(n).
Column k=4 difference binomial(n+8, 4) - T(n+8, 4) gives C(n+4,4)=A007318(n+4,4).
Column k=5 difference binomial(n+9, 5) - T(n+9, 5) gives sixth column of (1,5)-Pascal triangle A096943.
G.f.: (1 + 4*x^6*y^3 - 3*x*(1 + y) - 6*x^5*y^2*(1 + y) + 2*x^4*y*(2 + 7*y+ 2*y^2) + x^2*(3 + 10*y + 3*y^2) - x^3*(1 + 11*y + 11*y^2 + y^3))/((1 - x)^4*(1 - x*y)^4). - Stefano Spezia, Jul 09 2024
EXAMPLE
Triangle begins:
--------------------------------------------------
k= 0 1 2 3 4 5 6 7 8 9 10
--------------------------------------------------
n=0: 1
n=1: 1 1
n=2: 1 2 1
n=3: 1 3 3 1
n=4: 1 4 6 4 1
n=5: 1 5 10 10 5 1
n=6: 1 6 15 20 15 6 1
n=7: 1 7 21 35 35 21 7 1
n=8: 1 8 28 56 69 56 28 8 1
n=9: 1 9 36 84 121 121 84 36 9 1
n=10: 1 10 45 120 195 226 195 120 45 10 1
MATHEMATICA
t[n_, k_] := Sum[Binomial[n - k, m]*Binomial[k, m], {m, 0, 3}]; Column[Table[t[n, k], {n, 0, 12}, {k, 0, n}], Left]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Kolosov Petro, Jul 08 2024
STATUS
approved