login
A374449
Triangle read by rows: T(m,k) is the first number that starts a sequence of exactly k consecutive numbers with m prime factors, counted with multiplicity, if such a sequence is possible.
0
5, 2, 4, 9, 33, 8, 27, 170, 1083, 602, 2522, 211673, 16, 135, 1274, 4023, 12122, 204323, 355923, 6612470, 3405122, 49799889, 202536181, 3195380868, 5208143601
OFFSET
1,1
COMMENTS
For m > 1, row m can have at most 2^m - 1 terms, because one out of every 2^m consecutive numbers is divisible by 2^m.
T(4,15) = A117969(4) = 97524222465.
FORMULA
T(m,1) = 2^m for m >= 2.
EXAMPLE
Triangle starts
5 2
4 9 33
8 27 170 1083 603 3533 211673
T(3,2) = 27 because 27 = 3^3 and 28 = 2^2 * 7 each have 3 prime factors (counted with multiplicity) while 26 = 2*13 and 29 (prime) do not.
MAPLE
f:= proc(n)
uses priqueue;
local V, L, count, T, v, j, q, p, TP;
V:= Vector(2^n-1); count:= 0;
L:= [(-1)$(2^n), 2^n];
initialize(pq);
insert([-2^(n), 2$n], pq);
while count < 2^n-1 do
T:= extract(pq); v:= -T[1];
if L[-1] <> v-1 then
for j from 1 while L[-1]-L[-j] = j-1 do
if L[-j]-L[-j-1] <> 1 and V[j] = 0 then
V[j]:= L[-j]; count:= count+1;
fi od fi;
L:= [op(L[2..-1]), v];
q:= T[-1];
p:= nextprime(q);
for j from n+1 to 2 by -1 do
if T[j] <> q then break fi;
TP:= [T[1]*(p/q)^(n+2-j), op(T[2..j-1]), p$(n+2-j)];
insert(TP, pq);
od od;
op(convert(V, list));
end proc:
f(1):= 5, 2:
seq(f(i), i=1..3);
CROSSREFS
Cf. A000079 (first column except for row 1), A115186, A113752, A117969 (last term in each row).
Sequence in context: A124907 A181050 A020800 * A248261 A264991 A088507
KEYWORD
nonn,tabf,more
AUTHOR
Robert Israel, Jul 08 2024
STATUS
approved