Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 30 2024 12:41:56
%S 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,10,10,5,1,1,6,15,20,15,6,1,1,7,21,
%T 35,35,21,7,1,1,8,28,56,69,56,28,8,1,1,9,36,84,121,121,84,36,9,1,1,10,
%U 45,120,195,226,195,120,45,10,1
%N Iterated rascal triangle R3: T(n,k) = Sum_{m=0..3} binomial(n-k,m)*binomial(k,m).
%C Triangle T(n,k) is the third triangle R3 among the rascal-family triangles; A077028 is triangle R1, A374378 is triangle R2.
%C Triangle T(n,k) equals Pascal's triangle A007318 through row 2i+1, i=2 (i.e., row 7).
%C Triangle T(n,k) equals Pascal's triangle A007318 through column i, i=2 (i.e., column 3).
%H Jena Gregory, Brandt Kronholm and Jacob White, <a href="https://doi.org/10.1007/s00010-023-00987-6">Iterated rascal triangles</a>, Aequationes mathematicae, 2023.
%H Jena Gregory, <a href="https://scholarworks.utrgv.edu/etd/1050/">Iterated rascal triangles</a>, Theses and Dissertations. 1050., The University of Texas Rio Grande Valley, 2022.
%H Amelia Gibbs and Brian K. Miceli, <a href="https://arxiv.org/abs/2405.11045">Two Combinatorial Interpretations of Rascal Numbers</a>, arXiv:2405.11045 [math.CO], 2024.
%H Philip K. Hotchkiss, <a href="https://arxiv.org/abs/1907.07749">Student Inquiry and the Rascal Triangle</a>, arXiv:1907.07749 [math.HO], 2019.
%H Philip K. Hotchkiss, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Hotchkiss/hotchkiss4.html">Generalized Rascal Triangles</a>, Journal of Integer Sequences, Vol. 23, 2020.
%H Petro Kolosov, <a href="https://kolosovpetro.github.io/pdf/IdentitiesInRascalTriangle.pdf">Identities in Iterated Rascal Triangles</a>, 2024.
%F T(n,k) = 1 + k*(n-k) + 1/4*(k-1)*k*(n-k-1)*(n-k) + 1/36*(k-2)*(k-1)*k*(n-k-2)*(n-k-1)*(n-k).
%F Row sums give A008860(n).
%F Diagonal T(n+1, n) gives A000027(n).
%F Diagonal T(n+2, n) gives A000217(n).
%F Diagonal T(n+3, n) gives A000292(n).
%F Diagonal T(n+4, n) gives A005894(n).
%F Diagonal T(n+6, n) gives A247608(n).
%F Column k=4 difference binomial(n+8, 4) - T(n+8, 4) gives C(n+4,4)=A007318(n+4,4).
%F Column k=5 difference binomial(n+9, 5) - T(n+9, 5) gives sixth column of (1,5)-Pascal triangle A096943.
%F G.f.: (1 + 4*x^6*y^3 - 3*x*(1 + y) - 6*x^5*y^2*(1 + y) + 2*x^4*y*(2 + 7*y+ 2*y^2) + x^2*(3 + 10*y + 3*y^2) - x^3*(1 + 11*y + 11*y^2 + y^3))/((1 - x)^4*(1 - x*y)^4). - _Stefano Spezia_, Jul 09 2024
%e Triangle begins:
%e --------------------------------------------------
%e k= 0 1 2 3 4 5 6 7 8 9 10
%e --------------------------------------------------
%e n=0: 1
%e n=1: 1 1
%e n=2: 1 2 1
%e n=3: 1 3 3 1
%e n=4: 1 4 6 4 1
%e n=5: 1 5 10 10 5 1
%e n=6: 1 6 15 20 15 6 1
%e n=7: 1 7 21 35 35 21 7 1
%e n=8: 1 8 28 56 69 56 28 8 1
%e n=9: 1 9 36 84 121 121 84 36 9 1
%e n=10: 1 10 45 120 195 226 195 120 45 10 1
%t t[n_, k_] := Sum[Binomial[n - k, m]*Binomial[k, m], {m, 0, 3}]; Column[Table[t[n, k], {n, 0, 12}, {k, 0, n}], Left]
%Y Cf. A077028, A000027, A000217, A000292, A005894, A247608, A008860, A374378, A007318, A096943, A096940
%K nonn,tabl
%O 0,5
%A _Kolosov Petro_, Jul 08 2024