login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373124
Sum of indices of primes between powers of 2.
2
1, 2, 7, 11, 45, 105, 325, 989, 3268, 10125, 33017, 111435, 369576, 1277044, 4362878, 15233325, 53647473, 189461874, 676856245, 2422723580, 8743378141, 31684991912, 115347765988, 421763257890, 1548503690949, 5702720842940, 21074884894536, 78123777847065
OFFSET
0,2
COMMENTS
Sum of k such that 2^n+1 <= prime(k) <= 2^(n+1).
EXAMPLE
Row-sums of the sequence of all positive integers as a triangle with row-lengths A036378:
1
2
3 4
5 6
7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
MATHEMATICA
Table[Total[PrimePi/@Select[Range[2^(n-1)+1, 2^n], PrimeQ]], {n, 10}]
PROG
(PARI) ip(n) = primepi(1<<n); \\ A007053
t(n) = n*(n+1)/2; \\ A000217
a(n) = t(ip(n+1)) - t(ip(n)); \\ Michel Marcus, May 31 2024
CROSSREFS
For indices of primes between powers of 2:
- sum A373124 (this sequence)
- length A036378
- min A372684 (except initial terms), delta A092131
- max A007053
For primes between powers of 2:
- sum A293697
- length A036378
- min A104080 or A014210
- max A014234, delta A013603
For squarefree numbers between powers of 2:
- sum A373123
- length A077643, run-lengths of A372475
- min A372683, delta A373125, indices A372540
- max A372889, delta A373126, indices A143658
Sequence in context: A106013 A175445 A352762 * A073623 A101592 A349709
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 31 2024
STATUS
approved