login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A371760
a(n) is the smallest number k such that the k-th n-gonal number is a Fermat pseudoprime to base 2 (A001567), or -1 if no such number exists.
2
33, 1093, 73, 17, 97, 11, 193, 17, 89, 11, 193, 73, 673, 13, 257, 33, 41, 15, 97, 65, 1009, 13, 97, 149, 190, 23, 401, 41, 281, 31, 133, 17, 1033, 31, 89, 13, 6, 59, 241, 157, 1217, 91, 145, 37, 937, 29, 1289, 73, 97, 41, 617, 19, 137, 151, 34, 103, 8641, 47, 82
OFFSET
3,1
COMMENTS
The corresponding pseudoprimes are in A371759.
LINKS
Eric Weisstein's World of Mathematics, Polygonal Number.
Eric Weisstein's World of Mathematics, Poulet Number.
Wikipedia, Polygonal number.
Wikipedia, Pseudoprime.
MATHEMATICA
p[k_, n_] := ((n - 2)*k^2 - (n - 4)*k)/2; pspQ[n_] := CompositeQ[n] && PowerMod[2, n - 1, n] == 1; a[n_] := Module[{k = 2}, While[! pspQ[p[k, n]], k++]; k]; Array[a, 100, 3]
PROG
(PARI) p(k, n) = ((n-2)*k^2 - (n-4)*k)/2;
ispsp(n) = !isprime(n) && Mod(2, n)^(n-1) == 1;
a(n) = {my(k = 2); while(!ispsp(p(k, n)), k++); k; }
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 05 2024
STATUS
approved