OFFSET
1,1
COMMENTS
MÄ…kowski and Rotkiewicz (1969) proved that all the terms are Fermat pseudoprimes to base 2 (A001567).
The next term has 94 digits and is too large to include in the data section.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..18
Andrzej MÄ…kowski and Andrzej Rotkiewicz, On pseudoprime numbers of special form, Colloquium Mathematicum, Vol. 2, No. 20 (1969), pp. 269-271; alternative link.
Wikipedia, Pseudoprime.
MATHEMATICA
f[p_, k_] := (4^(p^(k + 1)) + 1)/(4^(p^k) + 1);
seq[max_] := Module[{s = {}, p = 3, f1, k, addFlag = True}, While[addFlag, If[p == 5, Continue[]]; k = 1; addFlag = False; While[(f1 = f[p, k]) < max, AppendTo[s, f1]; addFlag = True; k++]; p = NextPrime[p, If[p == 3, 2, 1]]]; Sort[s]]; seq[10^80]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 05 2024
STATUS
approved