The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A371757 Numbers of the form (4^(p^(k+1)) + 1)/(4^(p^k)) + 1), where k >= 1 and p is an odd prime other than 5. 1
 4033, 68719214593, 19341632594266545643831297, 324518553658426708768757511094273, 1684996264962499703367587717863072443065045481313942556034056847361 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Mąkowski and Rotkiewicz (1969) proved that all the terms are Fermat pseudoprimes to base 2 (A001567). The next term has 94 digits and is too large to include in the data section. LINKS Amiram Eldar, Table of n, a(n) for n = 1..18 Andrzej Mąkowski and Andrzej Rotkiewicz, On pseudoprime numbers of special form, Colloquium Mathematicum, Vol. 2, No. 20 (1969), pp. 269-271; alternative link. Wikipedia, Pseudoprime. Index entries for sequences related to pseudoprimes. MATHEMATICA f[p_, k_] := (4^(p^(k + 1)) + 1)/(4^(p^k) + 1); seq[max_] := Module[{s = {}, p = 3, f1, k, addFlag = True}, While[addFlag, If[p == 5, Continue[]]; k = 1; addFlag = False; While[(f1 = f[p, k]) < max, AppendTo[s, f1]; addFlag = True; k++]; p = NextPrime[p, If[p == 3, 2, 1]]]; Sort[s]]; seq[10^80] CROSSREFS Subsequence of A001567. Cf. A210454, A293626. Sequence in context: A234834 A212601 A060896 * A206617 A252686 A178274 Adjacent sequences: A371754 A371755 A371756 * A371758 A371759 A371760 KEYWORD nonn AUTHOR Amiram Eldar, Apr 05 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 13:41 EDT 2024. Contains 372826 sequences. (Running on oeis4.)