login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060896
n^12 - n^6 + 1.
2
1, 1, 4033, 530713, 16773121, 244125001, 2176735681, 13841169553, 68719214593, 282429005041, 999999000001, 3138426605161, 8916097462273, 23298080295673, 56693904845761, 129746326500001, 281474959933441, 582622213092193
OFFSET
0,3
COMMENTS
a(n) = Phi_36(n) where Phi_k is the k-th cyclotomic polynomial.
FORMULA
G.f.: -(x^12 +4020*x^11 +478362*x^10 +10188140*x^9 +66317319*x^8 +162512496*x^7 +162514212*x^6 +66316032*x^5 +10188855*x^4 +478076*x^3 +4098*x^2 -12*x +1)/(x -1)^13. [Colin Barker, Oct 29 2012]
a(0)=1, a(1)=1, a(2)=4033, a(3)=530713, a(4)=16773121, a(5)=244125001, a(6)=2176735681, a(7)=13841169553, a(8)=68719214593, a(9)=282429005041, a(10)=999999000001, a(11)=3138426605161, a(12)=8916097462273, a(n)=13*a(n-1)- 78*a(n-2)+ 286*a(n-3)- 715*a(n-4)+ 1287*a(n-5)- 1716*a(n-6)+ 1716*a(n-7)- 1287*a(n-8)+ 715*a(n-9)- 286*a(n-10)+ 78*a(n-11)- 13*a(n-12)+ a(n-13). - Harvey P. Dale, Dec 16 2013
MAPLE
A060896 := proc(n)
numtheory[cyclotomic](36, n) ;
end proc:
seq(A060896(n), n=0..20) ; # R. J. Mathar, Feb 11 2014
MATHEMATICA
Table[n^12-n^6+1, {n, 0, 30}] (* or *) LinearRecurrence[{13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1}, {1, 1, 4033, 530713, 16773121, 244125001, 2176735681, 13841169553, 68719214593, 282429005041, 999999000001, 3138426605161, 8916097462273}, 30] (* Harvey P. Dale, Dec 16 2013 *)
PROG
(PARI) { for (n=0, 1000, write("b060896.txt", n, " ", n^12 - n^6 + 1); ) } \\ Harry J. Smith, Jul 19 2009
CROSSREFS
Sequence in context: A234838 A234834 A212601 * A371757 A206617 A252686
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 05 2001
STATUS
approved