OFFSET
0,2
COMMENTS
Is there a formula analogous to the (conjectured) formula for A060900?
Could be broken into the number of walks that are constrained to a quadrant and the number that cross the origin. (I.e., 2*A005566(n) + 2*A005566(n-2)*A005568(1) + 2*A005566(n-4)*A005568(2) + ... + All terms that cross the origin twice + three times + ... + Cross floor(n/2) times.) - Benjamin Phillabaum, Mar 13 2011
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..750 (first 251 terms from Sean A. Irvine)
FORMULA
G.f.: 1 + 2*(B(x)-1)/(2 - C(x^2)) where B(x) is the g.f. of A005566 and C(x) is the g.f. of A005568. - Andrew Howroyd, Jan 05 2023
PROG
B(n)={sum(n=0, n, x^n*binomial(n, n\2)*binomial(n+1, (n+1)\2), O(x*x^n))}
C(n)={sum(n=0, (n+1)\2, x^(2*n)*binomial(2*n, n)*binomial(2*n+2, n+1)/((n+1)*(n+2)), O(x*x^n))}
seq(n) = {Vec( 1 + 2*(B(n)-1)/(2-C(n)) )} \\ Andrew Howroyd, Jan 05 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
David W. Wilson, May 05 2001
STATUS
approved