login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259223
E.g.f.: Sum_{n>=1} x^(n^2) * exp(2*x^n) / n!.
5
1, 4, 12, 44, 80, 912, 448, 41344, 62784, 2424320, 11264, 319358976, 53248, 11623886848, 435891701760, 1801685209088, 1114112, 1504049698308096, 4980736, 210465332463861760, 5676771352434180096, 792945839748153344, 96468992, 79367059219950565588992
OFFSET
1,2
LINKS
FORMULA
E.g.f.: -exp(2) + Sum_{n>=0} (2 + x^n)^n / n!.
a(n) = Sum_{d|n} 2^(d-n/d) * binomial(d, n/d) * n!/d! for n>=1.
EXAMPLE
E.g.f.: A(x) = x + 4*x^2/2! + 12*x^3/3! + 44*x^4/4! + 80*x^5/5! + 912*x^6/6! +...
where
A(x) = x*exp(2*x) + x^4*exp(2*x^2)/2! + x^9*exp(2*x^3)/3! + x^16*exp(2*x^4)/4! + x^25*exp(2*x^5)/5! + x^36*exp(2*x^6)/6! +...
also
A(x) = -exp(2) + 1 + (2+x) + (2+x^2)^2/2! + (2+x^3)^3/3! + (2+x^4)^4/4! + (2+x^5)^5/5! + (2+x^6)^6/6! +...
MATHEMATICA
a[n_] := DivisorSum[n, 2^(#-n/#) Binomial[#, n/#] n!/#!& ]; Array[a, 30] (* Jean-François Alcover, Dec 18 2015 *)
PROG
(PARI) {a(n) = local(A=1); A = sum(m=1, n, x^(m^2) * exp(2*x^m +x*O(x^n)) / m!); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = local(A=1); A = -exp(2) + sum(m=0, n, (2 + x^m +x*O(x^n))^m/m!); if(n==0, 0, n!*polcoeff(A, n))}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = if(n<1, 0, sumdiv(n, d, 2^(d-n/d) * binomial(d, n/d) * n!/d! ) )}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 21 2015
STATUS
approved