login
A321870
Fermat pseudoprimes to base 2 that are decagonal.
4
1105, 1387, 2047, 3277, 6601, 13747, 16705, 19951, 31417, 74665, 83665, 88357, 90751, 275887, 390937, 514447, 604117, 642001, 741751, 748657, 769567, 916327, 1092547, 1293337, 1302451, 1433407, 1520905, 1530787, 1809697, 1907851, 2008597, 2205967, 2387797
OFFSET
1,1
COMMENTS
Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A001107.
The corresponding indices of the decagonal numbers are 17, 19, 23, 29, 41, 59, 65, 71, 89, 137, 145, 149, 151, 263, 313, 359, 389, 401, 431, 433, 439, 479, 523, 569, 571, 599, 617, 619, 673, 691, 709, 743, 773, 829, 863, 883, 911, 919, 941, ...
LINKS
Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
MATHEMATICA
dec[n_] := n(4n-3); Select[dec[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
PROG
(PARI) isok(n) = (n>1) && ispolygonal(n, 10) && !isprime(n) && (Mod(2, n)^n==2); \\ Daniel Suteu, Nov 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 20 2018
STATUS
approved