login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293623
Fermat pseudoprimes to base 2 that are pentagonal.
8
7957, 241001, 1419607, 1830985, 1993537, 2134277, 2163001, 2491637, 2977217, 4864501, 5351537, 6952037, 10084177, 11367137, 11433301, 14609401, 21306157, 22591301, 26470501, 26977001, 29581501, 35851037, 44731051, 46517857, 53154337, 55318957, 55610837
OFFSET
1,1
COMMENTS
Rotkiewicz proved that this sequence is infinite.
Intersection of A001567 and A000326.
The corresponding indices of the pentagonal numbers are 73, 401, 973, 1105, 1153, 1193, 1201, 1289, 1409, 1801, 1889, 2153, 2593, 2753, 2761, ...
REFERENCES
Andrzej Rotkiewicz, Sur les nombres pseudopremiers pentagonaux, Bull. Soc. Roy. Sci. Liège, Vol. 33 (1964), pp. 261-263.
LINKS
EXAMPLE
7957 = (3*73^2 - 73)/2 is in the sequence since it is pentagonal, composite, and 2^7956 == 1 (mod 7957).
MATHEMATICA
p[n_]:=(3n^2-n)/2; Select[p[Range[3, 10^4]], PowerMod[2, (# - 1), #]==1 &]
CROSSREFS
Sequence in context: A260959 A316906 A316907 * A316908 A254138 A157660
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 13 2017
STATUS
approved