login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157660
a(n) = 8000*n - 40.
3
7960, 15960, 23960, 31960, 39960, 47960, 55960, 63960, 71960, 79960, 87960, 95960, 103960, 111960, 119960, 127960, 135960, 143960, 151960, 159960, 167960, 175960, 183960, 191960, 199960, 207960, 215960, 223960, 231960, 239960, 247960, 255960
OFFSET
1,1
COMMENTS
The identity (80000*n^2 - 800*n + 1)^2 - (100*n^2 - n)*(8000*n - 40)^2 = 1 can be written as A157661(n)^2 - A157659(n)*a(n)^2 = 1 (see also the second part of the comment at A157661). - Vincenzo Librandi, Jan 28 2012
FORMULA
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jan 28 2012
G.f.: x*(40*x+7960)/(x-1)^2. - Vincenzo Librandi, Jan 28 2012
E.g.f.: 40*(1 - (1 - 200*x)*exp(x)). G. C. Greubel, Nov 17 2018
MATHEMATICA
LinearRecurrence[{2, -1}, {7960, 15960}, 40] (* Vincenzo Librandi, Jan 28 2012 *)
PROG
(Magma) I:=[7960, 15960]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 28 2012
(PARI) for(n=1, 40, print1(8000*n-40", ")); \\ Vincenzo Librandi, Jan 28 2012
(Sage) [40*(200*n - 1) for n in (1..40)] # G. C. Greubel, Nov 17 2018
(GAP) List([1..40], n -> 40*(200*n - 1)); # G. C. Greubel, Nov 17 2018
CROSSREFS
Sequence in context: A293623 A316908 A254138 * A236786 A252190 A233730
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 04 2009
STATUS
approved