login
A321869
Numbers k such that m = 3k^2 + 2k + 10 and 3m - 2 are both primes.
2
3, 9, 17, 57, 69, 177, 293, 303, 317, 339, 377, 407, 429, 437, 443, 467, 503, 573, 597, 759, 783, 797, 849, 897, 1329, 1343, 1409, 1899, 1923, 2267, 2357, 2427, 2579, 2679, 2739, 2843, 2967, 3089, 3263, 3279, 3303, 3323, 3419, 3459, 3509, 3933, 3999, 4293
OFFSET
1,1
COMMENTS
Rotkiewicz proved that if k is in this sequence, and m = 3k^2 + 2k + 10, then m*(3m - 2) is an octagonal Fermat pseudoprime to base 2 (A321868), and thus under Schinzel's Hypothesis H there are infinitely many octagonal Fermat pseudoprimes to base 2.
The corresponding pseudoprimes are 467285, 1532245, 20134661, 26190165, 52685061, 95519061, ...
LINKS
Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
EXAMPLE
3 is in the sequence since 3*3^2 + 2*3 + 10 = 43 and 3*43 - 2 = 127 are both primes.
MATHEMATICA
Select[Range[1000], PrimeQ[3#^2 + 2# + 10] && PrimeQ[9#^2 + 6# + 28] &]
Select[Range[4300], With[{m=3#^2+2#+10}, AllTrue[{m, 3m-2}, PrimeQ]&]] (* Harvey P. Dale, Dec 13 2024 *)
PROG
(PARI) isok(n) = isprime(m=3*n^2 + 2*n + 10) && isprime(3*m-2); \\ Michel Marcus, Nov 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 20 2018
STATUS
approved