OFFSET
1,1
COMMENTS
Rotkiewicz proved that if k is in this sequence, and m = 3k^2 + 2k + 10, then m*(3m - 2) is an octagonal Fermat pseudoprime to base 2 (A321868), and thus under Schinzel's Hypothesis H there are infinitely many octagonal Fermat pseudoprimes to base 2.
The corresponding pseudoprimes are 467285, 1532245, 20134661, 26190165, 52685061, 95519061, ...
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
Wikipedia, Schinzel's Hypothesis H.
EXAMPLE
3 is in the sequence since 3*3^2 + 2*3 + 10 = 43 and 3*43 - 2 = 127 are both primes.
MATHEMATICA
Select[Range[1000], PrimeQ[3#^2 + 2# + 10] && PrimeQ[9#^2 + 6# + 28] &]
Select[Range[4300], With[{m=3#^2+2#+10}, AllTrue[{m, 3m-2}, PrimeQ]&]] (* Harvey P. Dale, Dec 13 2024 *)
PROG
(PARI) isok(n) = isprime(m=3*n^2 + 2*n + 10) && isprime(3*m-2); \\ Michel Marcus, Nov 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 20 2018
STATUS
approved