login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321866
Indices of tetrahedral numbers that are Fermat pseudoprimes to base 2.
2
3457, 16705, 21169, 28297, 30577, 45481, 114601, 123121, 127297, 140977, 156601, 159337, 312841, 393121, 418177, 437977, 443017, 453601, 509737, 518017, 521137, 539401, 545161, 545617, 657841, 679297, 704161, 717817, 762121, 775057, 832801, 904801, 996601
OFFSET
1,1
COMMENTS
Numbers n such that n(n+1)(n+2)/6 is a Fermat pseudoprimes to base 2.
The corresponding tetrahedral Fermat pseudoprimes are 6891657409, 777080801185, 1581289265305, 3776730328549, 4765143438329, 15680770945781, 250856489370101, 311068284648121, 343806031110049, ...
Sierpinski asked for the existence of these numbers in 1965.
LINKS
Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
EXAMPLE
3457 is in the sequence since A000292(3457) = 6891657409 is a Fermat pseudoprime to base 2.
MATHEMATICA
fermatQ[n_, k_] := CompositeQ[n] && PowerMod[k, n-1, n]==1; p[n_] := n(n+1)(n+2)/6; seq={}; Do[p1=p[n]; If[fermatQ[p1, 2], AppendTo[seq, n]], {n, 1, 1000000, 2}]; seq
PROG
(PARI) isok(n) = my(t = n*(n+1)*(n+2)/6); (t != 1) && (Mod(2, t)^t == 2); \\ Michel Marcus, Nov 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 20 2018
STATUS
approved