login
A322160
Fermat pseudoprimes to base 2 that are octadecagonal.
4
8481, 14491, 29341, 62745, 196093, 396271, 526593, 2184571, 2513841, 5256091, 7017193, 8137585, 13448593, 15247621, 16053193, 16879501, 18740971, 20494401, 29878381, 33704101, 35703361, 36724591, 41607721, 42709591, 69741001, 70593931, 80927821, 82976181
OFFSET
1,1
COMMENTS
Rotkiewicz proved that under Schinzel's Hypothesis H this sequence is infinite.
Intersection of A001567 and A051870.
The corresponding indices of the octadecagonal numbers are 33, 43, 61, 89, 157, 223, 257, 523, 561, 811, 937, 1009, 1297, 1381, 1417, 1453, 1531, ...
LINKS
Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
MATHEMATICA
octadec[n_]:=n(8n-7); Select[octadec[Range[1, 1000]], PowerMod[2, (# - 1), #]==1 &]
PROG
(PARI) isok(n) = (n>1) && ispolygonal(n, 18) && !isprime(n) && (Mod(2, n)^n==2); \\ Michel Marcus, Nov 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 29 2018
STATUS
approved