OFFSET
1,2
COMMENTS
Rotkiewicz proved that if k is in this sequence, and m = 8k^2 + 2k + 33, then m*(8m - 7) is an octadecagonal Fermat pseudoprime to base 2 (A322160), and thus under Schinzel's Hypothesis H there are infinitely many decagonal Fermat pseudoprimes to base 2.
The corresponding pseudoprimes are 14491, 2326319101, 5858192341, 160881885091, 227198832571, 481700815831, 960833787841, ...
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
Wikipedia, Schinzel's Hypothesis H.
EXAMPLE
1 is in the sequence since 8*1^2 + 2*1 + 33 = 43 and 8*43 - 7 = 337 are both primes.
MATHEMATICA
Select[Range[1000], PrimeQ[8#^2 + 2# + 33] && PrimeQ[64#^2 + 16# + 257] &]
PROG
(PARI) isok(n) = isprime(m = 8*n^2+2*n+33) && isprime(8*m-7); \\ Michel Marcus, Nov 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 29 2018
STATUS
approved