login
A322161
Numbers k such that m = 8k^2 + 2k + 33 and 8m - 7 are both primes.
2
1, 46, 58, 133, 145, 175, 208, 223, 241, 403, 430, 463, 526, 568, 808, 868, 985, 1015, 1021, 1105, 1120, 1360, 1465, 1501, 1600, 1918, 1978, 2236, 2350, 2413, 2908, 2965, 3043, 3211, 3265, 3523, 3556, 3568, 3601, 3721, 3811, 3868, 4066, 4291, 4300, 4336, 4831
OFFSET
1,2
COMMENTS
Rotkiewicz proved that if k is in this sequence, and m = 8k^2 + 2k + 33, then m*(8m - 7) is an octadecagonal Fermat pseudoprime to base 2 (A322160), and thus under Schinzel's Hypothesis H there are infinitely many decagonal Fermat pseudoprimes to base 2.
The corresponding pseudoprimes are 14491, 2326319101, 5858192341, 160881885091, 227198832571, 481700815831, 960833787841, ...
LINKS
Andrzej Rotkiewicz, On some problems of W. Sierpinski, Acta Arithmetica, Vol. 21 (1972), pp. 251-259.
EXAMPLE
1 is in the sequence since 8*1^2 + 2*1 + 33 = 43 and 8*43 - 7 = 337 are both primes.
MATHEMATICA
Select[Range[1000], PrimeQ[8#^2 + 2# + 33] && PrimeQ[64#^2 + 16# + 257] &]
PROG
(PARI) isok(n) = isprime(m = 8*n^2+2*n+33) && isprime(8*m-7); \\ Michel Marcus, Nov 29 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 29 2018
STATUS
approved