|
|
A308252
|
|
Squarefree composite numbers k with chained prime factors: the last digit of every prime factor is the same as the first digit of the next one. Prime factors must be in ascending order.
|
|
2
|
|
|
46, 58, 93, 111, 143, 187, 209, 265, 295, 403, 422, 446, 454, 458, 466, 478, 481, 482, 497, 502, 511, 514, 526, 538, 542, 553, 554, 562, 566, 586, 713, 851, 921, 933, 939, 951, 993, 1011, 1041, 1047, 1059, 1077, 1101, 1111, 1119, 1133, 1137, 1149, 1167, 1177, 1191, 1199
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence contains all squarefree numbers of A308099.
|
|
LINKS
|
|
|
EXAMPLE
|
1426 is such a number because it is a squarefree composite, with prime factors in ascending order 2, 23 and 31 which are chained.
|
|
MATHEMATICA
|
Select[Range@1500, SquareFreeQ@#&&PrimeNu@#>1&&And@@(Last@#[[1]]==First@#[[2]]&/@Partition[IntegerDigits@*First/@FactorInteger@#, 2, 1])&]
|
|
PROG
|
(PARI) isok(n) = {my(f=factor(n)[, 1]); if ((#f <= 1) || !issquarefree(n), return(0)); my(vd=digits(f[1]), d=vd[#vd], vd2, d2); if ((#f <= 1) || !issquarefree(n), return(0)); for (k=2, #f, vd2 = digits(f[k]); d2 = vd2[1]; if (d2 != d, return (0)); vd = vd2; d = vd[#vd]; ); return (1); } \\ Michel Marcus, May 18 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|