The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308249 Squares of automorphic numbers in base 12 (cf. A201918). 0
 0, 1, 16, 81, 4096, 6561, 263169, 1478656, 40960000, 205549569, 54988374016, 233605955584, 6263292059649, 303894740860929, 338531738189824, 170196776412774400, 709858175909625856, 18638643564726714369, 124592287100855910400, 2576097707358918017025, 479214351668445504864256 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS (sqrt(m))_12 is a suffix of m_12. - A.H.M. Smeets, Aug 09 2019 All terms k^2 in this sequence (except the trivials 0 and 1) have a square root k that is the suffix of one of the 12-adic numbers given by A259468 or A259469. From this, the sequence has an infinite number of terms. - A.H.M. Smeets, Aug 09 2019 LINKS V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179. FORMULA Equals A201918(n)^2. EXAMPLE 4096 = 2454_12 and sqrt(2454_12) = 54_12. Hence 4096 is in the sequence. PROG (Sage) [(n * n) for n in (0..1000000) if (n * n).str(base = 12).endswith(n.str(base = 12))] (Python) dig = "0123456789AB" def To12(n):     s = ""     while n > 0:         s, n = dig[n%12]+s, n//12     return s n, m = 1, 0 print(n, m*m) while n < 100:     m = m+1     m2, m1 = To12(m*m), To12(m)     i, i2, i1 = 0, len(m2), len(m1)     while i < i1 and (m2[i2-i-1] == m1[i1-i-1]):         i = i+1     if i == i1:         print(n, m*m) n = n+1 # A.H.M. Smeets, Aug 09 2019 CROSSREFS Cf. A201918, A259468, A259469. Sequence in context: A053909 A151502 A030693 * A285989 A231303 A218082 Adjacent sequences:  A308246 A308247 A308248 * A308250 A308251 A308252 KEYWORD nonn,base AUTHOR Jeremias M. Gomes, May 17 2019 EXTENSIONS Terms a(16)..a(21) from A.H.M. Smeets, Aug 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 16:20 EDT 2021. Contains 348215 sequences. (Running on oeis4.)