

A322162


Numbers k such that bsigma(k) = 2k + 2, where bsigma(k) is the sum of biunitary divisors of k (A188999).


0



80, 104, 832, 1952, 7424, 62464, 522752, 8382464, 33357824, 134193152, 267649024, 17167286272, 549754241024
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If m is a term of A050414, i.e., 2^m  3 is prime, then 2^(2*m2) * (2^m3) is in this sequence, and also 2^(m1) * (2^m3) if m is even.


LINKS



EXAMPLE

80 is in this sequence since its sum of biunitary divisors is 162 = 2 * 80 + 2.


MATHEMATICA

fun[p_, e_] := If[OddQ[e], (p^(e+1)1)/(p1), (p^(e+1)1)/(p1)p^(e/2)]; Select[Range[2, 10000], Times@@(fun @@@ FactorInteger[#]) == 2#+2 &]


PROG

(PARI) bsigma(n, f=factor(n))=prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if (e%2, (p^(e+1)1)/(p1), (p^(e+1)1)/(p1) p^(e/2)));


CROSSREFS



KEYWORD

nonn,more


AUTHOR



EXTENSIONS



STATUS

approved



