OFFSET
0,1
COMMENTS
For p > 1, q > 1, limit_{n->oo} ( Product_{k=0..n} (p^k + q^(n-k)) )^(1/n^2) = exp((1/2) * (log(p)^2 + log(p)*log(q) + log(q)^2) / log(p*q)); formula due to Vaclav Kotesovec (cf. A369680). For this sequence, p = 2 and q = 4.
FORMULA
a(n) = Product_{k=0..n} (2^k + 4^(n-k)).
a(n) = 8^(n*(n+1)/2) * Product_{k=0..n} (1/2^k + 1/4^(n-k)).
a(n) = 4^(n*(n+1)/2) * Product_{k=0..n} (1 + 2^n/8^k).
a(n) = 2^(n*(n+1)/2) * Product_{k=0..n} (1 + 4^n/8^k).
a(n) = 2^(-n*(n+1)/2) * Product_{k=0..n} (2^n + 8^k).
a(n) = 4^(-n*(n+1)/2) * Product_{k=0..n} (4^n + 8^k).
Limit_{n->oo} a(n)^(1/n^2) = 2^(7/6) = 2.244924096618745962867... [using the formula by Vaclav Kotesovec given in the comments section].
EXAMPLE
a(0) = (1 + 1) = 2;
a(1) = (1 + 4)*(2 + 1) = 15;
a(2) = (1 + 4^2)*(2 + 4)*(2^2 + 1) = 510;
a(3) = (1 + 4^3)*(2 + 4^2)*(2^2 + 4)*(2^3 + 1) = 84240;
a(4) = (1 + 4^4)*(2 + 4^3)*(2^2 + 4^2)*(2^3 + 4)*(2^4 + 1) = 69204960;
a(5) = (1 + 4^5)*(2 + 4^4)*(2^2 + 4^3)*(2^3 + 4^2)*(2^4 + 4)*(2^5 + 1) = 284844384000;
...
RELATED SERIES.
Sum_{n>=0} Product_{k=0..n} (1/2^k + 1/4^(n-k)) = 2 + 15/8 + 510/8^3 + 84240/8^6 + 69204960/8^10 + 284844384000/8^15 + 5892302096179200/8^21 + ... + a(n)/8^(n*(n+1)/2) + ... = 5.2656633442570372661094196585300212123165...
PROG
(PARI) {a(n) = prod(k=0, n, 2^k + 4^(n-k))}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2024
STATUS
approved