login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370014
a(n) = Product_{k=0..n} (2^k + 4^(n-k)).
0
2, 15, 510, 84240, 69204960, 284844384000, 5892302096179200, 613826012249992396800, 322003239202740297793536000, 850857971372280730568060043264000, 11334246342025651164429104024534384640000, 760681528794595483313206024106936185273712640000
OFFSET
0,1
COMMENTS
For p > 1, q > 1, limit_{n->oo} ( Product_{k=0..n} (p^k + q^(n-k)) )^(1/n^2) = exp((1/2) * (log(p)^2 + log(p)*log(q) + log(q)^2) / log(p*q)); formula due to Vaclav Kotesovec (cf. A369680). For this sequence, p = 2 and q = 4.
FORMULA
a(n) = Product_{k=0..n} (2^k + 4^(n-k)).
a(n) = 8^(n*(n+1)/2) * Product_{k=0..n} (1/2^k + 1/4^(n-k)).
a(n) = 4^(n*(n+1)/2) * Product_{k=0..n} (1 + 2^n/8^k).
a(n) = 2^(n*(n+1)/2) * Product_{k=0..n} (1 + 4^n/8^k).
a(n) = 2^(-n*(n+1)/2) * Product_{k=0..n} (2^n + 8^k).
a(n) = 4^(-n*(n+1)/2) * Product_{k=0..n} (4^n + 8^k).
Limit_{n->oo} a(n)^(1/n^2) = 2^(7/6) = 2.244924096618745962867... [using the formula by Vaclav Kotesovec given in the comments section].
EXAMPLE
a(0) = (1 + 1) = 2;
a(1) = (1 + 4)*(2 + 1) = 15;
a(2) = (1 + 4^2)*(2 + 4)*(2^2 + 1) = 510;
a(3) = (1 + 4^3)*(2 + 4^2)*(2^2 + 4)*(2^3 + 1) = 84240;
a(4) = (1 + 4^4)*(2 + 4^3)*(2^2 + 4^2)*(2^3 + 4)*(2^4 + 1) = 69204960;
a(5) = (1 + 4^5)*(2 + 4^4)*(2^2 + 4^3)*(2^3 + 4^2)*(2^4 + 4)*(2^5 + 1) = 284844384000;
...
RELATED SERIES.
Sum_{n>=0} Product_{k=0..n} (1/2^k + 1/4^(n-k)) = 2 + 15/8 + 510/8^3 + 84240/8^6 + 69204960/8^10 + 284844384000/8^15 + 5892302096179200/8^21 + ... + a(n)/8^(n*(n+1)/2) + ... = 5.2656633442570372661094196585300212123165...
PROG
(PARI) {a(n) = prod(k=0, n, 2^k + 4^(n-k))}
for(n=0, 15, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 08 2024
STATUS
approved