login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370017
Expansion of g.f. exp( Sum_{n>=1} ( Sum_{k>=1} k^n*x^k )^n * (1-x)^n / n ).
1
1, 1, 2, 6, 24, 134, 1054, 11848, 188498, 4229252, 132827660, 5831280558, 357547362450, 30623840955096, 3671208716930842, 616066177338250188, 145118327950242179484, 47979462271120402757058, 22322388348068543767280728, 14614554870662196578923073494, 13488493387943242211496467931272
OFFSET
0,3
COMMENTS
a(n)^(1/n^2) tends to 2^(1/4). - Vaclav Kotesovec, Feb 19 2024
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) exp( Sum_{n>=1} ( Sum_{k>=1} k^n*x^k )^n * (1-x)^n / n ).
(2) exp( Sum_{n>=1} ( Sum_{k=1..n} A008292(n,k) * x^k )^n * (1-x)^(-n^2) / n ), where A008292 are the Eulerian numbers.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 134*x^5 + 1054*x^6 + 11848*x^7 + 188498*x^8 + 4229252*x^9 + 132827660*x^10 + 5831280558*x^11 + 357547362450*x^12 +...
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 71*x^4/4 + 531*x^5/5 + 5367*x^6/6 + 74313*x^7/7 + 1401295*x^8/8 + 36221143*x^9/9 + 1283583423*x^10/10 + ...
The logarithm of g.f. A(x) equals the series:
log(A(x)) = Sum_{n>=1} (x + 2^n*x^2 + 3^n*x^3 +...+ k^n*x^k +...)^n * (1-x)^n/n,
or,
log(A(x)) = (x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 +...)*(1-x) +
(x + 2^2*x^2 + 3^2*x^3 + 4^2*x^4 + 5^2*x^5 +...)^2 * (1-x)^2/2 +
(x + 2^3*x^2 + 3^3*x^3 + 4^3*x^4 + 5^3*x^5 +...)^3 * (1-x)^3/3 +
(x + 2^4*x^2 + 3^4*x^3 + 4^4*x^4 + 5^4*x^5 +...)^4 * (1-x)^4/4 + ...
This logarithmic series can be written using the Eulerian numbers like so:
log(A(x)) = x/(1-x) + (x + x^2)^2/(1-x)^4/2 + (x + 4*x^2 + x^3)^3/(1-x)^9/3 + (x + 11*x^2 + 11*x^3 + x^4)^4/(1-x)^16/4 + (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)^5/(1-x)^25/5 + (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)^6/(1-x)^36/6 + ...
+ [ Sum_{k=1..n} A008292(n,k) * x^k ]^n / (1-x)^(n^2)/n +...
PROG
(PARI) {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}
{a(n) = my(A=1, Oxn=x*O(x^n)); A = exp( sum(m=1, n+1, sum(k=1, m, A008292(m, k)*x^k +Oxn)^m / (1-x +Oxn)^(m^2) / m ) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A052862 A277211 A374153 * A343482 A216779 A129101
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 14 2024
STATUS
approved