login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A343482 Expansion of the e.g.f. sqrt(-1 + 2 / (1 - x) / exp(x)). 2
1, 0, 1, 2, 6, 24, 135, 930, 7105, 59192, 549360, 5746080, 66713361, 839528052, 11308954657, 163038260294, 2520332282910, 41640324943968, 730119174449151, 13507292654421390, 263004450921933817, 5385277610047242620, 115775314245285797256, 2606072891349667903152, 61248210450060537498321 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..24.

FORMULA

E.g.f. y(x) satisfies y*y' = exp(-x)*x/(1-x)^2.

a(0)=1, a(n) = Sum_{k=1..floor(n/2)} (-1)^(k-1)*A014304(k-1)*A008306(n,k) for n > 0.

For all p prime, a(p) == -1 (mod p).

For n > 1, a(n) == 0 (mod (n-1)).

a(n) ~ 2 * n^n / exp(n + 1/2). - Vaclav Kotesovec, Jul 06 2021

EXAMPLE

sqrt(-1+2/(1-x)/exp(x)) =  1 + x^2/2! + 2*x^3/3! + 6*x^4/4! + 24*x^5/5! + 135*x^6/6! + 930*x^7/7! + 7105*x^8/8! + 59192*x^9/9! + ...

a(23) = Sum_{k=1..11} (-1)^(k-1)*A014304(k-1)*A008306(23,k) = 2606072891349667903152.

For k=1, (-1)^(1-1)*A014304(1-1)*A008306(23,1) == -1 (mod 23), because A014304(0) = 1 and A008306(23,1) = (23-1)!

For k>=2, (-1)^(k-1)*A014304(k-1)*A008306(23,k) == 0 (mod 23), because A008306(23,k) == 0 (mod 23), result a(23) == -1 (mod 23).

a(18) = Sum_{k=1..9} (-1)^(k-1)*A014304(k-1)*A008306(18,k) = 730119174449151.

a(18) == 0 (mod (18-1)), because for k >= 1, A008306(18,k) == 0 (mod 17).

MAPLE

A014304:= proc(n) option remember; `if`(n=0, 1, (-1)^n + add(binomial(n, k)*A014304(k)* A014304(n-k-1), k=0..n-1)) end:

A008306 := proc(n, k): if k=1 then (n-1)! ; elif n<=2*k-1 then 0; else (n-1)*procname(n-1, k)+(n-1)*procname(n-2, k-1) ; end if; end proc:

a:= n-> add(((-1)^(k-1)*A014304(k-1)*A008306(n, k)), k=1..iquo(n, 2)):a(0):=1 ; seq(a(n), n=0..24);

# second program:

a := series(sqrt(-1+2/(1-x)/exp(x)), x=0, 25):seq(n!*coeff(a, x, n), n=0..24);

MATHEMATICA

CoefficientList[Series[Sqrt[-1+2/(1-x)/E^x], {x, 0, 24}], x] * Range[0, 24]!

PROG

(PARI) my(x='x+O('x^30)); Vec(serlaplace(sqrt(-1 + 2 / (1 - x) / exp(x)))) \\ Michel Marcus, Jul 06 2021

CROSSREFS

Cf. A000166, A008306, A014304, A327006, A345697, A345969, A346119.

Sequence in context: A191343 A052862 A277211 * A216779 A129101 A292907

Adjacent sequences:  A343479 A343480 A343481 * A343483 A343484 A343485

KEYWORD

nonn

AUTHOR

Mélika Tebni, Jul 06 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 18:19 EST 2021. Contains 349467 sequences. (Running on oeis4.)