OFFSET
1,1
COMMENTS
Esparza and Gehring (2018) proved that assuming a generalized Hardy-Littlewood conjecture the number of terms not exceeding x is asymptotically (c/2) * x/log(x)^3, where c = A343480 = 5.716497...
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Carlos Esparza and Lukas Gehring, Estimating the density of a set of primes with applications to group theory, arXiv:1810.08679 [math.NT], 2018.
EXAMPLE
29 is a term since it is prime, 29 = 3*9 + 2, 29-1 = 28 = 2^2 * 7 has only one odd prime divisor (7) and 29+1 = 30 = 2*3*5 has only one prime divisor (5) larger than 3.
MATHEMATICA
q[n_] := Mod[n, 3] == 2 && PrimeQ[n] && PrimeQ[(n + 1)/2^IntegerExponent[n + 1, 2]/3^IntegerExponent[n + 1, 3]] && PrimeQ[(n - 1)/2^IntegerExponent[n - 1, 2]]; Select[Range[2000], q]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 16 2021
STATUS
approved