login
A343484
Number of equivalence classes of length n squarefree reduced words over {0, 1, 2, 3} under action of renaming symbols.
0
0, 1, 1, 2, 3, 5, 8, 13, 18, 27, 41, 62, 90, 134, 198, 293, 423, 619, 908, 1329, 1938, 2832, 4142, 6061, 8824, 12879, 18794, 27425, 39977, 58333, 85109, 124180, 180994, 263931, 384933, 561402, 818617, 1193841, 1740980, 2538896, 3702022, 5398458, 7872351
OFFSET
0,4
COMMENTS
Any equivalence class of words with length at least 2 has exactly 8 members.
LINKS
Richard A. Dean, A sequence without repeats on x, x^{-1}, y, y^{-1}, Amer. Math. Monthly 72, 1965. pp. 383-385. MR 31 #350.
Tero Harju, Avoiding Square-Free Words on Free Groups, arXiv:2104.06837 [math.CO], 2021.
FORMULA
a(n) = A343421(n)/8 for n >= 2.
EXAMPLE
a(5) = 5 corresponds to the 5 words 01210, 01030, 01230, 01032, and 01232.
CROSSREFS
Sequence in context: A001149 A144117 A081612 * A374737 A301754 A120761
KEYWORD
nonn
AUTHOR
James Rayman, Apr 16 2021
STATUS
approved