login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277211
Number of n X n X n triangular 0..1 arrays with no 2 X 2 X 2 subblock having three equal elements.
0
1, 2, 6, 24, 130, 960, 9702, 134512, 2562516, 67152240, 2422643366, 120395521752, 8245524190254, 778511553019200, 101361018574446630, 18202576574465956224, 4509516189662784365688, 1541444043912873505870464, 727078284287957812245097914
OFFSET
0,2
FORMULA
a(n) = 2*A007017(n-1) for n>0. - Alois P. Heinz, Nov 05 2016
EXAMPLE
Some solutions for n=3:
0 0 0 1 1 1
0 1 1 0 1 1 0 0 1 0 0 1
1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 0
PROG
(PARI) nextrowcomb(rowarr) = my(k=#rowarr, i=0); while(rowarr[k]==1, rowarr[k]=0; i++; k--); while(rowarr[k]==0 && k > 1, k--); if(rowarr[k]==1, rowarr[k]=0; rowarr[k+1]=1; k=k+2; while(i > 0, rowarr[k]=1; k++; i--), for(x=k, k+i, rowarr[x]=1)); rowarr
is_validcombination(toprow, bottomrow) = for(v=1, #toprow, if(toprow[v]==bottomrow[v] && toprow[v]==bottomrow[v+1], return(0))); for(w=2, #toprow, if(toprow[w-1]==bottomrow[w] && toprow[w]==bottomrow[w], return(0))); return(1)
terms(n) = my(toprows=[[0], [1]], bottomrow=[0, 0], validrows=[]); while(1, for(k=1, #toprows, if(is_validcombination(toprows[k], bottomrow), validrows=concat(validrows, [bottomrow]))); if(vecmin(bottomrow)==1, bottomrow=vector(#bottomrow+1); print1(#validrows, ", "); toprows=validrows; validrows=[], bottomrow=nextrowcomb(bottomrow)); if(#bottomrow==n+2, break))
terms(5) \\ print initial five terms
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Nov 05 2016
EXTENSIONS
Thanks to R. H. Hardin and Charles R Greathouse IV for helpful suggestions.
a(7)-a(18) from Alois P. Heinz, Nov 05 2016
STATUS
approved