login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368473
Product of exponents of prime factorization of the exponentially 2^n-numbers (A138302).
6
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2
OFFSET
1,4
COMMENTS
The terms of A005361 that are powers of 2 (A000079).
The first position of 2^k, for k = 0, 1, ..., is 1, 4, 15, 126, 1134, ..., which is the position of A085629(2^k) in A138302.
LINKS
FORMULA
a(n) = A005361(A138302(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/d) * Product_{p prime} (1 + Sum_{k>=0} 2^k/p^(2^k)) = 1.504710204899266020302..., where d = A271727 is the asymptotic density of the exponentially 2^n-numbers.
MATHEMATICA
f[n_] := Module[{p = Times @@ FactorInteger[n][[;; , 2]]}, If[p == 2^IntegerExponent[p, 2], p, Nothing]]; Array[f, 150]
PROG
(PARI) lista(kmax) = {my(p); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); if(p >> valuation(p, 2) == 1, print1(p, ", "))); }
CROSSREFS
Similar sequences: A322327, A368472, A368474.
Sequence in context: A259154 A369933 A374327 * A106035 A293811 A362228
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Dec 26 2023
STATUS
approved