login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106035
The "Octanacci" sequence: Trajectory of 1 under the morphism 1->{1,2,1}, 2->{1}.
3
1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2
OFFSET
0,2
COMMENTS
Silver mean chain substitution sequence: characteristic polynomial = -x^2+2*x+1.
A space-filling lattice is given by: bb = aa /. 1 -> {-0.4142135623730951, 2.414213562373095} /. 2 -> {1,-0.414213562373095`} /. 3 -> 0; ListPlot[FoldList[Plus, {0, 0}, bb], PlotRange -> All, PlotJoined -> False, Axes -> False];
The sequence is S_oo where S_0 = 2, S_1 = 1; S_{n+2} = S_{n+1} S_n S_{n+1}. Used to construct the "labyrinth" tiling. - N. J. A. Sloane, Mar 13 2019
LINKS
M. Baake and R. V. Moody, Self-Similar Measures for Quasicrystals, in Directions in Mathematical Quasicrystals (eds. M. Baake and R. V. Moody), CRM Monograph Series, vol. 13, AMS, Providence, RI (2000), pp. 1-42; arXiv:math/0008063 [math.MG], 2000.
Clément Sire, Rémy Mosseri, and Jean-François Sadoc, Geometric study of a 2D tiling related to the octagonal quasiperiodic tiling, Journal de Physique 50.24 (1989): 3463-3476. See Eq. 2; HAL Id : jpa-00211156.
MAPLE
f(1):= (1, 2, 1): f(2):= (1): A:= [1]:
for i from 1 to 6 do A:= map(f, A) od:
A; # - N. J. A. Sloane, Mar 13 2019
MATHEMATICA
s[1] = {1, 2, 1}; s[2] = {1}; s[3] = {}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[6]
Nest[Function[l, Flatten[l/.{1->{1, 2, 1}, 2->{1}}]], {1}, 6] (* Vincenzo Librandi, Mar 14 2019 *)
SubstitutionSystem[{1->{1, 2, 1}, 2->{1}}, {1}, {6}]//Flatten (* Harvey P. Dale, Nov 20 2021 *)
CROSSREFS
See A324772 for version over {0,1}.
Sequence in context: A369933 A374327 A368473 * A293811 A362228 A105141
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 05 2005
STATUS
approved