login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106038 Triangle Loop von Koch substitution: characteristic polynomial:x^3-6x^2+8*x. 0
1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 1, 3, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 1, 3, 1, 2, 3, 1, 1, 2, 3, 1, 3, 1, 1, 3, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 1, 3, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 1, 3, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

To get the fractal: bb = aa /. 1 -> {1, 0} /. 2 -> {-1, N[Sqrt[3]]}/2 /. 3 -> {-1, -N[Sqrt[3]]}/2; ListPlot[FoldList[Plus, {0, 0}, bb], PlotJoined -> True, PlotRange -> All, Axes -> False];

LINKS

Table of n, a(n) for n=0..104.

FORMULA

1->{1, 2, 3, 1}, 2->{2, 1, 1, 2}, 3->{3, 1, 1, 3}

MATHEMATICA

s[1] = {1, 2, 3, 1}; s[2] = {2, 1, 1, 2}; s[3] = {3, 1, 1, 3};; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[4]

CROSSREFS

Sequence in context: A322874 A091654 A127246 * A078711 A338850 A322423

Adjacent sequences:  A106035 A106036 A106037 * A106039 A106040 A106041

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula, May 05 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 06:50 EDT 2021. Contains 348066 sequences. (Running on oeis4.)